• Title/Summary/Keyword: current source

Search Result 4,014, Processing Time 0.033 seconds

Inrush Current Elimination for a Three-Phase Off-Line UPS System (3상 오프라인 무정전 전원 시스템의 돌입전류 제거)

  • Bukhari, Syed Sabir Hussain;Kwon, Byung-il
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.944-945
    • /
    • 2015
  • Many sensitive loads always rely on UPS systems to maintain continuous power during abnormal utility power conditions. As any disturbance occurs at the utility side, an off-line UPS system takes over the load within a quarter cycle to avoid a blackout. However, the starting of the inverter can root the momentous inrush current for the transformer installed before the load, due to its magnetic saturation. The consequences of this current can be a reduction of line voltage and tripping of protective devices of the UPS system. Furthermore, it can also damage the transformer and decrease its lifetime by increasing the mechanical stresses on its windings. To prevent the inrush current, and to avoid its disruptive effects, this paper proposes an off-line UPS system that eliminates the inrush current phenomenon while powering the transformer coupled loads, using a current regulated voltage source inverter (CRVSI) instead of a typical voltage source inverter (VSI). Simulations have been performed to validate the operation of proposed off-line UPS system.

  • PDF

CURRENT CONTROL FOR PWM AC-DC CONVERTER USING SINUSOIDAL TRACKING CONTROLLER

  • Woo, Jung-In;Heo, Tae-Won;Lee, Hyun-Woo;Kim, Choon-Sam;Jung, Yung-Il
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.928-933
    • /
    • 1998
  • This paper presents a novel current control system to eliminate the steady state control error and to improve the transient characteristics for PWM AC-DC converter. A general mathematical model of the converter that is represented as a state-space model is first established. The state-space model is used for the simulation of PWM switching converter with the proposed current control system. The proposed sinusoidal tracking control system that does not require coordinate transformations using principle of the integral controller is described. It is proved that the steady state deviation reduces to zero through a transfer function of source current control system. Finally, it is seen that simulations agree with the experimental results in source current and reference of controlled ac current loop.

  • PDF

A Novel Control Scheme of Three-Phase PWM Rectifiers Eliminating AC-Side Sensors (교류측 센서를 제거한 3상 PWM 정류기의 새로운 제어)

  • 이동춘;이지명;임대식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.592-600
    • /
    • 2000
  • In this paper, a novel control scheme of three-phase PWM rectifiers using only dc-side sensors is proposed. The phase currents are reconstructed from switching states of the rectifier and the dc output current. For effective current control, the currents are estimated by a predictive state observer. Also, both the phase angle and the magnitude of the source voltage are estimated by controlling the deviation between the model current and the system current to be zero. The validity of the proposed ac phase and current sensorless technique has been verified by experimental results.

  • PDF

Novel current control for PWM AC-DC converter using internal principle of PI controller (PI 제어기의 내부원리를 이용한 PWM AC-DC 컨버터의 새로운 전류제어)

  • Heo, T.W.;Hwang, Y.M.;Kim, Y.B.;Lee, H.W.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.1944-1946
    • /
    • 1998
  • This paper presents a novel current control system to eliminate the steady state control error for PWM AC-DC converter. A general mathematical model of the converter which is represented as a state-space model is established. The state-space model is used for the simulation of converter with the proposed tracking control system of sinusoidal current. In this system, a novel current control which do not require coordinate transformations using internal principle of PI controller is described. It is proved that the steady state deviation reduce to zero through a transfer function of source current control system. Finally, simulations show good source current control characteristics by means of a simplified control system which do not require coordinate transformations.

  • PDF

Automatic Power Factor Correction Using a Harmonic-Suppressed TCR Equipped with a New Adaptive Current Controller

  • Obais, Abdulkareem Mokif;Pasupuleti, Jagadeesh
    • Journal of Power Electronics
    • /
    • v.14 no.4
    • /
    • pp.742-753
    • /
    • 2014
  • In this paper, a new continuously and linearly controlled capacitive static VAR compensator is proposed for the automatic power factor correction of inductive single phase loads in 220V 50Hz power system networks. The compensator is constructed of a harmonic-suppressed TCR equipped with a new adaptive current controller. The harmonic-suppressed TCR is a new configuration that includes a thyristor controlled reactor (TCR) shunted by a passive third harmonic filter. In addition, the parallel configuration is connected to an AC source via a series first harmonic filter. The harmonic-suppressed TCR is designed so that negligible harmonic current components are injected into the AC source. The compensator is equipped with a new adaptive closed loop current controller, which responds linearly to reactive current demands. The no load operating losses of this compensator are negligible when compared to its capacitive reactive current rating. The proposed system is validated on PSpice which is very close in terms of performance to real hardware.

Open and Short Circuit Switches Fault Detection of Voltage Source Inverter Using Spectrogram

  • Ahmad, N.S.;Abdullah, A.R.;Bahari, N.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.190-199
    • /
    • 2014
  • In the last years, fault problem in power electronics has been more and more investigated both from theoretical and practical point of view. The fault problem can cause equipment failure, data and economical losses. And the analyze system require to ensure fault problem and also rectify failures. The current errors on these faults are applied for identified type of faults. This paper presents technique to detection and identification faults in three-phase voltage source inverter (VSI) by using time-frequency distribution (TFD). TFD capable represent time frequency representation (TFR) in temporal and spectral information. Based on TFR, signal parameters are calculated such as instantaneous average current, instantaneous root mean square current, instantaneous fundamental root mean square current and, instantaneous total current waveform distortion. From on results, the detection of VSI faults could be determined based on characteristic of parameter estimation. And also concluded that the fault detection is capable of identifying the type of inverter fault and can reduce cost maintenance.

Three-Phase Three-Switch Buck-Type Rectifier Based on Current Source Converter for 5MW PMSG Wind Turbine Systems

  • Chae, Beomseok;Suh, Yongsug;Kang, Tahyun
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1501-1512
    • /
    • 2018
  • This paper proposes a three-phase three-switch buck-type converter as the MSC of a wind turbine system. Owing to a novel switching modulation scheme that can eliminate the unwanted diode rectifier mode switching state, the proposed system exhibits a satisfying ac voltage and current waveform quality and torque ripple up to the level of a typical current source rectifier even under a wide power factor operating range. The proposed system has been verified through simulations and HILS tests on a PMSG wind turbine model of 5MW/4160V. The proposed converter has been shown to provide a stator current THD of 3.9% and a torque ripple of 1% under the rated power condition. In addition to the inherent advantage of the reduced switch count of three-phase three-switch buck-type converters, the proposed switching modulation technique can make this converter a viable solution for the MSC placed inside of a nacelle, which is under severe volume, weight and mechanical vibration design limits.

Improved Current Source using Full-Bridge Converter Type for Thyristor Valve Test of HVDC System (HVDC 시스템의 SCR 사이리스터 밸브 시험을 위한 Full-Bridge Converter 방식의 개선된 전류원 회로)

  • Jung, Jae-Hun;Cho, Han-Je;Goo, Beob-Jin;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.363-368
    • /
    • 2015
  • This paper deals with an improved current source using full-bridge converter type for thyristor valve test of HVDC system. The conventional high-current and low-voltage source of synthetic test circuit requires additional auxiliary power supply to provide the reverse voltage for the auxiliary thyristor valve during turn-off process. The proposed circuit diagram to provide the reverse voltage is extremely simple because no additional component is required. The reverse voltage can be obtained from the input DC voltage of the high-current and low-voltage power supply. The operation principle and design method of the proposed system are described. Simulation and experimental results in scaled down STC of 200 V, 30 A demonstrate the validity of the proposed scheme.

A Study on the Thermal Deformation of Current Collectors by Burning Heat Pellets in Thermal Batteries (열전지의 열원 연소에 따른 전류집전체 열변형에 관한 연구)

  • Ji, Hyun-Jin;Kim, Jong-Myong;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.527-534
    • /
    • 2012
  • Thermal batteries are primary batteries that use molten salts as an electrolyte and employ an internal pyrotechnic source to heat the battery stack to operating temperatures, typically between 450 and $550^{\circ}C$. The unit cell of thermal batteries consists of an anode, an electrolyte, a cathode, a heat pellet and a current collector. The heat source for such batteries is typically heat pellets based on $Fe/KClO_4$. The elevated temperature by combustion of heat pellet is supposed to cause a flatness non-uniformity, buckling, with a lateral extension diameter of current collector. This paper mainly focused on the combustion and buckling model of current collector to simulate the effect of heat source. Mechanical stresses in the current collector caused by thermal stress is a critical design consideration of thermal batteries because the internal short circuit could be occurred.

Source-Overlapped Gate Length Effects at Tunneling current of Tunnel Field-Effect Transistor (소스영역으로 오버랩된 게이트 길이 변화에 따른 터널 트랜지스터의 터널링 전류에 대한 연구)

  • Lee, Ju-Chan;Ahn, Tae-Jun;Sim, Un-Sung;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.611-613
    • /
    • 2016
  • The characteristics of tunnel field-effect transistor(TFET) structure with source-overlapped gate was investigated using a TCAD simulations. Tunneling is mostly divided into line-tunneling and point-tunneling, and line-tunneling is higher performance than point-tunneling in terms of subthreshold swing(SS) and on-current. In this paper, from the simulation results of source-overlapped gate length effects at silicon(Si), germanium(Ge), Si-Ge hetero TFET structure, the guideline of optimal structure with highest performance are proposed.

  • PDF