• Title/Summary/Keyword: current loop

Search Result 1,139, Processing Time 0.03 seconds

Eddy current loss analysis of permanent magnet using Finite Element Method (유한요소해석을 이용한 영구자석의 와전류 손실 해석)

  • Lee, Jeong-Jong;Jung, Jea-Woo;Lee, Sang-Ho;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.794-795
    • /
    • 2008
  • In this paper, eddy current compensation method of 2D finite element method(FEM) is studied compared with 3D FEM. The result of eddy current loss of permeant magnet is different from 3D FEM result because current loop of the inside of permanent magnet can not expressed by 2D FEM. In order to reduce the error between 2D and 3D FEM, permanent magnet conductivity is compensated considering current loop of magnet shape according to length and width.

  • PDF

A Novel Compensator for Eliminating DC Magnetizing Current Bias in Hybrid Modulated Dual Active Bridge Converters

  • Yao, Yunpeng;Xu, Shen;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1650-1660
    • /
    • 2016
  • This paper proposes a compensator to eliminate the DC bias of inductor current. This method utilizes an average-current sensing technique to detect the DC bias of inductor current. A small signal model of the DC bias compensation loop is derived. It is shown that the DC bias has a one-pole relationship with the duty cycle of the left side leading lag. By considering the pole produced by the dual active bridge (DAB) converter and the pole produced by the average-current sensing module, a one-pole-one-zero digital compensation method is given. By using this method, the DC bias is eliminated, and the stability of the compensation loop is ensured. The performance of the proposed compensator is verified with a 1.2-kW DAB converter prototype.

Robust Decoupling Digital Control of Three-Phase Inverter for UPS (3상 UPS용 인버터의 강인한 비간섭 디지털제어)

  • Park, Jee-Ho;Heo, Tae-Won;Shin, Dong-Ryul;Roh, Tae-Kyun;Woo, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.246-255
    • /
    • 2000
  • This paper deals with a novel full digital control method of the three-phase PWM inverter for UPS. The voltage and current of output filter capacitor as state variables are the feedback control input. In addition, a double deadbeat control consisting of a d-q current minor loop and a d-q voltage major loop, both with precise decoupling, have been developed. The switching pulse width modulation based on SVM is adopted so that the capacitor current should be exactly equal to its reference current. In order to compensate the calculation time delay, the predictive control is achieved by the current·voltage observer. The load prediction is used to compensate the load disturbance by disturbance observer with deadbeat response. The experimental results show that the proposed system offers an output voltage with THD less than 2% at a full nonlinear load.

  • PDF

A Study on Bipolar DC-DC Converter for Low Voltage Direct Current Distribution (저압 직류 배전용 양극성 DC-DC 컨버터에 관한 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study proposes a DC-DC converter topology of solid-state transformer for low-voltage DC distribution. The proposed topology consists of a voltage balancer and bipolar DC-DC converter. The voltage and current equations are obtained on the basis of switching states to design the controller. The open-loop gain of the controller is achieved using the derived voltage and current equations. The controller gain is selected through the frequency analysis of the loop gain. The inductance and capacitance are calculated considering the voltage and current ripples. The prototype is fabricated in accordance with the designed system parameters. The proposed topology and designed controller are verified through simulation and experiment.

LINEAR AND NON-LINEAR LOOP-TRANSVERSAL CODES IN ERROR-CORRECTION AND GRAPH DOMINATION

  • Dagli, Mehmet;Im, Bokhee;Smith, Jonathan D.H.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.295-309
    • /
    • 2020
  • Loop transversal codes take an alternative approach to the theory of error-correcting codes, placing emphasis on the set of errors that are to be corrected. Hitherto, the loop transversal code method has been restricted to linear codes. The goal of the current paper is to extend the conceptual framework of loop transversal codes to admit nonlinear codes. We present a natural example of this nonlinearity among perfect single-error correcting codes that exhibit efficient domination in a circulant graph, and contrast it with linear codes in a similar context.

The Mechanical Characteristic Analysis and Improvement of Precision Position Control System with AC Servo Motor and Ball Screw (AC Servo Motor와 Ball screw를 이용한 정밀 위치제어시스템의 기계적 특성 분석 및 개선)

  • Ko, Su-Chang;Jin, Kyoung-Bog
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.31-36
    • /
    • 2007
  • Effect of coulomb friction and backlash on the single loop position control has been studied for the precision position control. We have showed the limit cycle on the single loop system which used a ball screw that had the backlash. Also, we have made an inner loop with a classical velocity and torque controller which was forcing the current of d axis to be zero by using a permanent-magnet synchronous motor and composed the outer loop with linear encoder for sensing a position of the loader. Also, we have used least squares fit(LSF) observer for reducing noise when we got velocity from position outputs. We have shown a good result by using the dual loop through simulation and experiment.

  • PDF

Performance Comparison of Different Solar Array Simulator Control by Ellipse Approximation (태양광패널 모사장치의 제어방식에 따른 소신호 특성 비교 분석)

  • Wellawatta, Thusitha;Seo, Young-Tae;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.16-24
    • /
    • 2021
  • Solar array simulator (SAS) is essential equipment in testing and evaluating the power processing performance of a power conditioning system. However, the nonlinearity in the current(I)-voltage(V) characteristic makes the control loop design of SAS a challenging task. Conventionally, only the inner loop is usually considered in the control design approach. However, this study proves that the reference generation loop also interacts with the inner loop and plays a key role in the overall performance of the SAS. In this paper, the performance of voltage-mode control and impedance control, which are two of the most popular architectures for the SAS system, are reviewed and compared by multi-loop analysis.

Analysis of the Closed-Loop Supply Chain Focusing on Power Batteries in China

  • Chen, Jinhui;Bayarsaikhan, Bayarsaikhan;Nam, Sootae;Jin, Chanyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.570-571
    • /
    • 2021
  • The research on waste power batteries in China in the past ten years reveals that the power battery recycling industry is enormous but marred with several challenges. A study of China's current power battery closed-loop supply chain revealed some issues in the power battery recycling industry, such as imperfect supply chain, small recycling scale, asymmetric information, and imperfect profit distribution mechanism. This paper uses the theory of corporate social responsibility and consumer choice to propose a closed-loop network of power batteries based on block chain technology and analyzes the existing closed-loop supply chain of power batteries. Consequently, this study provides a new idea for developing the power battery closed-loop supply chain by proposing the closed-loop network of power batteries based on blockchain technology

  • PDF

Loop Closure in a Line-based SLAM (직선기반 SLAM에서의 루프결합)

  • Zhang, Guoxuan;Suh, Il-Hong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.120-128
    • /
    • 2012
  • The loop closure problem is one of the most challenging issues in the vision-based simultaneous localization and mapping community. It requires the robot to recognize a previously visited place from current camera measurements. While the loop closure often relies on visual bag-of-words based on point features in the previous works, however, in this paper we propose a line-based method to solve the loop closure in the corridor environments. We used both the floor line and the anchored vanishing point as the loop closing feature, and a two-step loop closure algorithm was devised to detect a known place and perform the global pose correction. We propose an anchored vanishing point as a novel loop closure feature, as it includes position information and represents the vanishing points in bi-direction. In our system, the accumulated heading error is reduced using an observation of a previously registered anchored vanishing points firstly, and the observation of known floor lines allows for further pose correction. Experimental results show that our method is very efficient in a structured indoor environment as a suitable loop closure solution.

Design and control of Single Loop Output Voltage Controller for 3 Phase PWM Inverter (3상 PWM 인버터의 단일제어루프 전압제어기의 설계 및 제어)

  • Gang B.H.;Gho J.S.;Cho J.S.;Choe G.H.;Kwak C.H.;Kim J.H,
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.496-500
    • /
    • 2001
  • There are two ways in the output voltage control method in PWM inverter. One is the double loop voltage control composed of inner current control loop and outer voltage control loop. Because it shows fast response and low steady state error, utilized in many application. The Other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. But in low output impedance, it shows good control performance in all load range than double loop control. In this paper, single loop voltage control rule and gain was developed analytically, and these were verified through computer simulation and experiment.

  • PDF