
Bull. Korean Math. Soc. 57 (2020), No. 2, pp. 295–309

https://doi.org/10.4134/BKMS.b190204

pISSN: 1015-8634 / eISSN: 2234-3016

LINEAR AND NON-LINEAR LOOP-TRANSVERSAL CODES

IN ERROR-CORRECTION AND GRAPH DOMINATION

Mehmet Daǧlı, Bokhee Im, and Jonathan D. H. Smith

Abstract. Loop transversal codes take an alternative approach to the

theory of error-correcting codes, placing emphasis on the set of errors
that are to be corrected. Hitherto, the loop transversal code method

has been restricted to linear codes. The goal of the current paper is
to extend the conceptual framework of loop transversal codes to admit

nonlinear codes. We present a natural example of this nonlinearity among

perfect single-error correcting codes that exhibit efficient domination in
a circulant graph, and contrast it with linear codes in a similar context.

1. Introduction

Loop transversal codes embody an alternative approach to the theory of
error-correcting and error-detecting codes, as described in a number of earlier
papers [2–4,6,9] and elsewhere [1,5], [10, §I.4.4]. Instead of directly addressing
the construction of the code, the approach places initial emphasis on the set
of errors that are to be corrected. Algebraic structure is created on this set of
errors, for example using a greedy algorithm, or by other means. A combination
of the algebraic structure on the error set with the inherent structure of the
channel then yields the code itself through a process known as local duality. In
particular, the perfect binary and ternary Golay codes are constructed greedily
in this fashion [4, Tables 3, 4]. Loop transversal codes handle white noise and
non-white noise error patterns, such as burst errors, with equal facility [3].
For the binary case, loop transversal codes have been related to Gröbner basis
methods [7, Rem. 2.54].

Until now, the study of loop transversal codes has been limited to the linear
case, where the algebraic structure on the set of errors is that of an abelian
group. (Nevertheless, Aydinyan did use linear loop transversal codes over Z/4
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to produce nonlinear Gray codes over Z/2 [1].) The goal of the current paper
is to extend the conceptual framework of loop transversal codes in channels
with abelian group structure so that they may also include nonlinear codes.
We then discuss a natural example of the occurrence of this nonlinearity, in
the context of perfect single-error correcting codes for efficient domination of
a circulant graph.

The extended treatment of loop transversal codes is presented in Section 2.
The full general setting (2.1) is an abelian group channel where addition from
the product of a code subset and an error ball subset yields a bijection with the
channel. In other terms, an arbitrary channel word is decomposed uniquely as
the sum of a codeword and an error in the decoding process.

Under reasonable assumptions, decoding the sum of errors yields algebraic
structure on the error ball, as discussed in §2.2. The code is linear, i.e., a
subgroup of the channel, only if this error ball structure is an abelian group
(Corollary 2.14). Note that the error ball need not form a subgroup of the
channel group. Thus in our loop transversal interpretation of the Division
Algorithm for division by a positive divisor d (Example 2.2), the channel forms
the free abelian group of integers, while the error ball, the set of possible
remainders, forms the finite group of residues modulo d.

Moving beyond the previous context for loop transversal codes, we now
define a code to be quasilinear if the algebraic structure on the error ball
forms a (necessarily commutative) quasigroup. Theorem 2.11 shows that this
is the case, for example, if the error ball is finite, or invariant under negation of
channel words. The question then arises as to whether there are any quasilinear
codes which are not actually linear. Example 2.15 provides a positive answer
to this key question.

In the more general nonlinear setting, §2.3 examines the process by which
the code may be recovered from the error ball structure. In the linear case, this
was achieved by the Principle of Local Duality as summarized in Corollary 2.18.
Here, in combination with the inherent abelian group structure of the channel,
the binary addition operation on the error ball suffices to recover the code.
In the new, more general setting, the duality survives, but may lose its local
character. In the linear case it suffices to know the errors assigned to the sum of
pairs of errors under the decoding process, but the nonlinear case may require
the errors assigned to sums of large numbers of errors, as described by the
Principle of Duality formulated in Theorem 2.16.

While the key Example 2.15 of a genuinely nonlinear loop transversal code
was initially presented in the abstract, it actually arises naturally in the context
of perfect single-error correcting codes given by efficient dominating sets in
circulant graphs. To set the stage for the example, Section 3 examines the role
of linear codes as efficient dominating sets in circulants. Theorem 3.1 provides
the relevant necessary and sufficient number-theoretical conditions for their
occurrence, while Theorem 3.2 gives a sufficient condition for the error balls
centered at any vertex to carry isomorphic abelian group structure. By a result
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of Obradović et al. [8], it follows that no efficient dominating set in a circulant
of degree less than 5 can yield a nonlinear code.

Section 4.1 then frames Example 2.15 as a nonlinear error ball for an efficient
dominating set in the circulant C12(1, 5, 6), the wreath product of C6 with K2,
which has degree 5. Serving as a nonlinear analogue of Theorem 3.2 for this
example, Theorem 4.3 shows that all the nonlinear error ball structures in
C12(1, 5, 6) are isomorphic.

The paper generally follows the conventions of [10] for notation and concepts
that are not otherwise explained. In particular, in order to avoid a plethora of
brackets in discussions of non-associative structures, algebraic notation (with
arguments preceding functions) is employed as the default option.

2. Loop transversal codes

2.1. Nonlinear codes

Let (A,+, 0) be an abelian group. Suppose that there are subsets K and B
of A such that the restricted addition

(2.1) ∇ : K ×B → A; (k, b) 7→ k + b

is an isomorphism of sets. In particular, disjoint union decompositions

(2.2) A =
∐
k∈K

(k +B) and A =
∐
b∈B

(K + b)

are consequences of the isomorphism property for (2.1).

Lemma 2.1. Given the isomorphism (2.1), the equality

(K −K) ∩ (B −B) = {0}

holds.

Proof. Suppose that k1 − k2 = b1 − b2 for k1, k2 ∈ K and b1, b2 ∈ B. Then
k1 + b2 = k2 + b1. Since (2.1) is injective, it follows that k1 = k2 and b1 = b2,
so that k1 − k2 = b1 − b2 = 0. �

Using the terminology of coding theory, the group A is called the channel,
while the set K is called the code. Elements of A may be described as words,
while elements of K are said to be codewords. The code K is described as linear
if it forms a subgroup of A, while the term nonlinear applies to general codes.
The set B is called the error set or ball. Its elements are errors. The ball B is
defined as symmetric if −B = B. For example, in a binary channel of length
l, where A ∼= (Z/2,+, 0)l has exponent 2, the ball will always be symmetric.

Suppose that

∆: A→ K ×B;x 7→ (xδ, xε)

is the inverse of the set isomorphism (2.1). In other words,

(2.3) x = xδ + xε
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for all x in A, while

(2.4) (k + b)δ = k and (k + b)ε = b

for codewords k and errors b. The relation (2.3) is read as decoding a word x to a
codeword xδ, with the implication that error xε occurred during transmission
through the channel A. Thus the map δ : A → K is described as decoding,
while ε : A → B is described as error-detection. The structure (A,∆), which
implicitly includes K as the codomain of δ and B as the codomain of ε, is
described as a coding scheme.

Example 2.2. Consider the channel A = (Z,+, 0) of integers under addition,
with linear code K = dZ for a positive divisor d ∈ Z, and asymmetric ball
B = Z/d = {0, 1, . . . , d−1}. The Division Algorithm, yielding a unique quotient
q ∈ Z and remainder r ∈ B for each dividend x = dq+r, gives a coding scheme
(A,∆) with ∆: x 7→ (dq, r).

Remark 2.3. Note that the general axioms for a coding scheme are completely
symmetric in K and B. Nevertheless, linguistically, the interpretive vocabulary
breaks the symmetry. In general, relationships between K and B, and results
(such as Theorem 2.16 below) that determine features of one of K or B from
the other, are said to embody duality.

Definition 2.4. A coding scheme (A,∆) is said to be coherent if:

• ∀ k ∈ K , kδ = k; and
• |δ(B)| = 1.

Example 2.5. The coding scheme of Example 2.2 is coherent.

By abuse of language, one often says simply that a code K is coherent, as in
the following example. This example will be examined repeatedly throughout
the paper, and studied in full detail in Section 4.

Example 2.6. Consider A = (Z/12,+, 0), with a coherent, nonlinear code
K = {3, 6} and symmetric ball B = {6,−5,−1, 0, 1, 5}. Then the respective
decoding and error-detection maps are given by the following table:

x ∈ A −5 −4 −3 −2 −1 0 1 2 3 4 5 6

xδ ∈ K 6 3 3 3 6 6 6 3 3 3 6 6

xε ∈ B 1 5 6 −5 5 6 −5 −1 0 1 −1 0

Lemma 2.7. Suppose that (A,∆) is a coherent coding scheme with code K
and symmetric ball B.

(a) The ball B contains 0.
(b) K ∩B = {0δ}.
(c) The error-detection map restricts to a well-defined bijection

(2.5) ε : B → B; bε = b− 0δ
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on the ball.

Proof. (a) Consider a codeword k. Since k = kδ + kε = k + kε, one has
0 = kε ∈ B.

(b) Since 0 = 0δ + 0ε and the ball is symmetric, 0δ = −0ε ∈ −B = B, so
K ∩B ⊇ {0δ}. Conversely, if k ∈ K ∩B, then k = kδ ∈ δ(B) = {0δ}.

(c) For each element b of B, one has b = bδ + bε = 0δ + bε, so bε = b − 0δ.
Thus the map ε : B → B has

(2.6) B → B; b 7→ b+ 0δ

as a two-sided inverse. �

Remark 2.8. Under the assumptions of Lemma 2.7, the formula (2.5) for ε
only applies to elements of the ball. In Example 2.6, for instance, one has
4ε = 1 6= −2 = 4− 6 = 4− 0δ.

2.2. Algebra on the ball

Let (A,∆) be a coding scheme. For each natural number m, define an m-ary
operation

µm : Bm → B; (b1, . . . , bm) 7→
m∏
i=1

bi

with

(2.7)

m∏
i=1

bi = (b1 + · · ·+ bm)ε

for b1, . . . , bm in B. In compound expressions involving elements of the ball, the
operations

∏m
i=1 bi will bind more strongly than the abelian group operations

from (A,+, 0).

Example 2.9. The initial instances of (2.7) are as follows.

m = 0: The nullary operation µ0 selects the constant element 0ε of B.
m = 1: The unary operation µ1 : B → B is just the restriction to B of the error

map ε : A→ B.
m = 2: A commutative binary operation ∗ called multiplication is defined on

the ball B by

(2.8) b1 ∗ b2 = (b1 + b2)ε

for b1, b2 ∈ B. In other words,

(2.9) b1 + b2 ∈ K + (b1 ∗ b2)

within the second disjoint union decomposition of (2.2).

Remark 2.10. The definition of the operation ∗ on the ball B only involves
the decomposition of the subset B + B of A in (2.2). In this sense, one may
consider the binary algebra (B, ∗) as a local structure within the channel A.
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A magma (M, ◦), i.e., a set M with a binary operation ◦, is a quasigroup if
knowledge of any two of the elements x, y, z of M within the equation x◦y = z
serves to specify the third element uniquely. The coding scheme (A,∆), and
more informally the code K itself, are then described as quasilinear if (B, ∗) is
a quasigroup.

Theorem 2.11. Consider the ball B, with operation (2.8).

(a) For each element b of B, the left multiplication

(2.10) L∗(b) : B → B;x 7→ b ∗ x
is injective.

(b) If B is finite, then K is quasilinear.
(c) If B is symmetric, then K is quasilinear.

Proof. (a) Suppose that there are elements b1, b2, b3 of B such that b1 ∗ b2 =
b1 ∗ b3. By (2.9), one has

b1 + b2 = k2 + b1 ∗ b2 and b1 + b3 = k3 + b1 ∗ b3
for elements k2, k3 of K. Thus

b2 − b3 = k2 − k3 ∈ (K −K) ∩ (B −B) = {0}
by Lemma 2.1, so that b2 = b3.

(b) When B is finite, the injective left multiplications (2.10) become bijec-
tive. Thus the commutative structure (B, ∗) is a quasigroup.

(c) Suppose that B = −B. For any given b1, b2 ∈ B, it will be shown that
there is an element b of B with b1 ∗ b = b2, so that L(b1) becomes surjective.
Combined with the injectivity from (a), this will show that the left multipli-
cations (2.10) become bijective, making the commutative structure (B, ∗) a
quasigroup.

Consider the element b1 − b2 of A. By the second decomposition in (2.2),
there are elements k of K and b′ of B such that b1 − b2 = k + b′. Thus for
b = −b′ ∈ B, one has b1 − b2 = k − b or

K + (b1 ∗ b) 3 b1 + b = k + b2 ∈ K + b2

by (2.9). Thus b1 ∗ b = b2, as required. �

A simple application of (2.5) yields the following.

Lemma 2.12. Let (A,∆) be a coherent coding scheme with code K and sym-
metric ball B. Suppose b1, b2 ∈ B. Then

b1 ∗ b2 = (b1 + b2)ε = b1 − 0δ + b2

if b1 + b2 ∈ B.

Proposition 2.13. Let (A,∆) be a coherent coding scheme with code K and
symmetric ball B. Then the multiplication ∗ on B has 0δ as a two-sided identity
element.
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Proof. For b ∈ B, one has b+ 0δ ∈ B by (2.6). Then b ∗ 0δ = b by Lemma 2.12,
so 0δ is a two-sided identity element for the commutative binary operation ∗
on B. �

Recall that a loop is a quasigroup (M, ◦) with an identity element e, so that
e ◦ x = x = x ◦ e for all x in M .

Corollary 2.14. Let (A,∆) be a coherent coding scheme with code K and
symmetric ball B.

(a) The structure (B, ∗, 0δ) is a commutative loop.
(b) If the code K is linear, then 0δ = 0, and (B, ∗, 0) is an abelian group.

Proof. (a) Since B is symmetric, Theorem 2.11(c) shows that (B, ∗) is a quasi-
group.

(b) If K is linear, then 0 ∈ K, so the coherence implies 0δ = 0. The second
disjoint union decomposition of (2.2) shows that B is a transversal to the
(normal) subgroup K of the abelian group A. Within an abelian group, each
such transversal is a normalized loop transversal, and there is an isomorphism

(2.11) (B, ∗, 0)→ (A/K,+,K); b 7→ K + b

(compare [10, Example I.4.3.4]). �

Example 2.15. In the context of Example 2.6, the multiplication ∗ on the ball
is given by the following commutative loop table, with 6 = 0δ as the identity
element:

∗ 6 −5 −1 0 1 5

6 6 −5 −1 0 1 5

−5 −5 −1 0 1 5 6

−1 −1 0 −5 5 6 1

0 0 1 5 6 −5 −1

1 1 5 6 −5 −1 0

5 5 6 1 −1 0 −5

Note that

(1 ∗ 1) ∗ (1 ∗ 1) = −1 ∗ −1 = −5 ,

while

((1 ∗ 1) ∗ 1) ∗ 1 = ((−1) ∗ 1) ∗ 1 = 6 ∗ 1 = 1 .

Thus the multiplication ∗ on B is not associative, or even power-associative.
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2.3. The ball determines the code

Let (A,∆) be a coding scheme. The operation (2.7) on the ball, together
with (2.3), yields

b1 + · · ·+ bm = (b1 + · · ·+ bm)δ + (b1 + · · ·+ bm)ε

= (b1 + · · ·+ bm)δ +

m∏
i=1

bi

and thus

(2.12) (b1 + · · ·+ bm)δ =

m∑
i=1

bi −
m∏
i=1

bi

for b1, . . . , bm in the ball.

Theorem 2.16 (Principle of Duality). Consider a coding scheme (A,∆). Sup-
pose that the ball B generates the monoid (A,+, 0). Then the set

(2.13)
{ m∑
i=1

bi −
m∏
i=1

bi

∣∣∣ m ∈ N , b1, . . . , bm ∈ B
}

constitutes the code K.

Proof. Certainly, the relation (2.12) shows that each element of (2.13) is a
codeword. Conversely, let k be a codeword. By (2.2), one has a = k + b for
some word a and error b, where k = aδ and b = aε. Since B generates the
monoid (A,+, 0), there is a natural number m with a collection b1, . . . , bm of
elements of B such that a =

∑m
i=1 bi. The relation (2.12) then yields k =∑m

i=1 bi −
∏m
i=1 bi. �

Example 2.17. In the context of Examples 2.6 and 2.15, the codeword 6 =
0− 0ε is given by taking m = 0 in (2.13). The other codeword is 3 = (1 + 1)−
(−1) = (1 + 1)− (1 ∗ 1), taking m = 2 and b1 = b2 = 1.

Corollary 2.18 (Principle of Local Duality, [3, §2], [6, (1.5)], [9, (1.4)], [10,
Prop. I.4.4.3]). Suppose that B generates the monoid (A,+, 0). Then if the
code K is linear, it is determined entirely by the group structures (A,+) and
(B, ∗).

Proof. When (B, ∗) is an abelian group, one has
∏m
i=1 bi = b1 ∗ · · · ∗ bm for

natural numbers m and elements b1, . . . , bm of the ball. �

3. Linear codes in circulants

For a positive integer n, consider the additive group (Z/n,+, 0) of integers
modulo n. Let J be a subset of {1, 2, . . . , bn/2c}. The circulant graph Cn(J) is
then defined as the (simple, regular) graph on the vertex set Z/n whose edge
set is E = {{x, x+d} | x ∈ Z/n, d ∈ J}. In this context, J is known as the jump
set. For J = {s1, . . . , sr}, the circulant Cn(J) is also written as Cn(s1, . . . , sr).
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3.1. Perfect linear single-error correcting codes

In the guise of efficient domination, perfect single-error correcting codes in
connected circulant graphs of degree 3 or 4 were studied in [8]. Within a general
circulant Cn(J), the following provides a loop-transversal analysis of perfect,
single-error correcting codes, linear in the cyclic channel Z/n.

Theorem 3.1. Consider a circulant Cn(J) of degree d. Let b = 1 + d. Then
Cn(J) admits a perfect, single-error correcting code, being linear in the channel
(Z/n,+, 0) if and only if b divides n and ±J comprises a full set of non-zero
residues modulo b.

Proof. When Cn(J) admits a perfect, single-error correcting linear code, the
d-element set of single errors is ±J modulo n, so the cardinality of the full
error set B (including the trivial error 0) is b. The perfect code partitions
the n-element channel into disjoint balls of radius 1, each of size b, centered
at the codewords. In particular, b divides n. Since the code is linear in the
channel (Z/n,+, 0), it is the subgroup bZ/n of Z/n. Consider an integer e with
0 ≤ e < b. Suppose that the residue e modulo n decodes to eδ = bq modulo n,
for some integer q. Then the error incurred is e− eδ = e− bq modulo n. Thus
the error set includes each residue e modulo b.

Conversely, suppose that b divides n and ±J comprises a full set of non-zero
residues modulo b. Define B = {0} ∪ (±J) modulo n. Then |B| = b. Addition
modulo b defines a group structure (B, ∗) on the set of trivial and single errors.
Corollary 2.18 then yields a perfect, single-error correcting loop-transversal
code bZ/n in the channel (Z/n,+, 0) equipped with the metric structure of
Cn(J). �

3.2. Isomorphism of linear error-ball groups

Theorem 3.2. Consider a circulant graph Cn(J). Assume that the vertices
in the efficient dominating set are equally spaced, i.e., form a coset of a sub-
group K0 of order n/k in Z/n. Then the error ball centered at any vertex is
isomorphic to Z/k.

Proof. Since K0 as a code is linear, the error ball B0 centered at the vertex 0
has the structure of the abelian group Z/k provided by the isomorphism (2.11).
Now consider the code Kl = l + K0, and the ball Bl centered at an arbitrary
vertex l + kt. Define a mapping

ϕ : B0 → Bl; b 7→ b+ l + kt .

Let b1, b2 ∈ B0. There exists an integer s such that

b1 ∗B0
b2 = (b1 + b2)εB0 = ( ks︸︷︷︸

∈K0

+ b1 + b2 − ks︸ ︷︷ ︸
∈B0

)εB0 = b1 + b2 − ks.
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Then it follows that

ϕ(b1 ∗B0
b2) = ϕ(b1 + b2 − ks)

= b1 + b2 − ks+ l + kt

= (l + kt+ ks︸ ︷︷ ︸
∈Kl

+ b1 + b2 − ks+ l + kt︸ ︷︷ ︸
∈Bl

)εBl

= (b1 + l + kt+ b2 + l + kt)εBl

= (ϕ(b1) + ϕ(b2))εBl

= ϕ(b1) ∗Bl
ϕ(b2) .

Hence B0 and Bl are isomorphic. �

By [8], the vertices in an efficient dominating set are necessarily equally
spaced for circulant graphs of degree two, three and four. Thus, we obtain the
following result.

Corollary 3.3. In a code yielding an efficient dominating set for a circulant,
any error ball of order 3, 4 or 5 forms an abelian group.

4. Nonlinear codes in the circulant C12(1, 5, 6)

Corollary 3.3 shows that efficient dominating sets in circulants of degree
less than 5 have error balls with abelian group structure. The aim of this
section is to interpret the nonlinear error ball structure exhibited successively
in Examples 2.6, 2.15 and 2.17 within the context of efficient dominating sets
for circulants.
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Figure 1. The perfect dominating set {3, 6} in C12(1, 5, 6)
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4.1. Perfect nonlinear single-error correcting codes

Consider the code K = {3, 6} of Example 2.6, with symmetric error ball
B = {6,−5,−1, 0, 1, 5}. As displayed in Figure 1, this code represents a perfect
dominating set or single-error correcting code in the circulant C12(1, 5, 6), the
wreath product graph C6 wrK2.

4.2. Isomorphism of non-linear error-ball loops

Consider the circulant graph C12(1, 5, 6), namely C6 wrK2, as presented in
§4.1. For a given k in Z/12, there are two different error-ball loops centered at
the vertex k, namely B+

k and B−k . They correspond respectively to the codes

K+
k = {k, k + 3} and K−k = {k, k − 3}. Thus Example 2.6 presents the code

K−6 and error-ball B−6 . In this section, we show that all of the 24 error-ball
loops corresponding to perfect dominating sets in the circulant C12(1, 5, 6) are
isomorphic.

Proposition 4.1. For a residue k ∈ Z/12, there is a loop isomorphism fk or
f : (B+

k , ∗)→ (B−k , ∗);x 7→ 2k − x.

Proof. Note that f is bijective. Let b1, b2 ∈ B+
k . Since 3 is not in the jump

set, either b1 + b2 − k ∈ B+
k or b1 + b2 − (k + 3) ∈ B+

k . We consider each case
separately.

Case I. Let b1 + b2 − k ∈ B+
k . Then

b1 ∗B+
k
b2 = (b1 + b2)

ε
B

+
k

= ( k︸︷︷︸
∈K+

k

+ b1 + b2 − k︸ ︷︷ ︸
∈B+

k

)
ε
B

+
k

= b1 + b2 − k.
It follows that

f(b1 ∗B+
k
b2) = f(b1 + b2 − k) = 3k − b1 − b2.

Note that 3k− b1− b2 ∈ B−k . Since 3 is not in the jump set, we have 3k− b1−
b2 + 3 /∈ B−k . Now, 4k − b1 − b2 ∈ Z/12 can be written as

k︸︷︷︸
∈K−

k

+ 3k − b1 − b2︸ ︷︷ ︸
∈B−

k

or k − 3︸ ︷︷ ︸
∈K−

k

+ 3k − b1 − b2 + 3︸ ︷︷ ︸
/∈B−

k

.

Then we have

f(b1) ∗B−
k
f(b2) = (2k − b1) ∗B−

k
(2k − b2)

= (4k − b1 − b2)
ε
B

−
k

= (k + 3k − b1 − b2)
ε
B

−
k

= 3k − b1 − b2
= f(b1 ∗B+

k
b2) .
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Case II. Let b1 + b2 − (k + 3) ∈ B+
k . Then

b1 ∗B+
k
b2 = (b1 + b2)

ε
B

+
k

= (k + 3︸ ︷︷ ︸
∈K+

k

+ b1 + b2 − (k + 3)︸ ︷︷ ︸
∈B+

k

)
ε
B

+
k

= b1 + b2 − (k + 3).

It follows that

f(b1 ∗B+
k
b2) = f(b1 + b2 − (k + 3)) = 3k − b1 − b2 + 3.

Since 3k− b1− b2 + 3 ∈ B−k , we have 3k− b1− b2 /∈ B−k . Note that 4k− b1− b2
can be written as

k︸︷︷︸
∈K−

k

+ 3k − b1 − b2︸ ︷︷ ︸
/∈B−

k

or k − 3︸ ︷︷ ︸
∈K−

k

+ 3k − b1 − b2 + 3︸ ︷︷ ︸
∈B−

k

.

Then it follows that

f(b1) ∗B−
k
f(b2) = (2k − b1) ∗B−

k
(2k − b2)

= (4k − b1 − b2)
ε
B

−
k

= (k − 3 + 3k − b1 − b2 + 3)
ε
B

−
k

= 3k − b1 − b2 + 3

= f(b1 ∗B+
k
b2) .

In conclusion, f(b1 ∗B+
k
b2) = f(b1) ∗B−

k
f(b2) in either case, so that f is an

isomorphism. �

Proposition 4.2. For residues k, l ∈ Z/12, the map φkl : x 7→ l − k + x gives
loop isomorphisms (B+

k , ∗)→ (B+
l , ∗) and (B−k , ∗)→ (B−l , ∗).

Proof. We give the proof by considering two cases as above.

Case I. If b1 + b2 − k ∈ B+
k , then b1 ∗B+

k
b2 = b1 + b2 − k, and

φkl (b1 ∗B+
k
b2) = φkl (b1 + b2 − k) = l − 2k + b1 + b2.

Since l − 2k + b1 + b2 ∈ B+
l , we have l − 2k + b1 + b2 − 3 /∈ B+

l . The residue
2l − 2k + b1 + b2 ∈ Z/12 can be written as

l︸︷︷︸
∈K+

l

+ l − 2k + b1 + b2︸ ︷︷ ︸
∈B+

l

or l + 3︸︷︷︸
∈K+

l

+ l − 2k + b1 + b2 − 3︸ ︷︷ ︸
/∈B+

l

.
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It follows that

φkl (b1) ∗B+
l
φkl (b2) = (l − k + b1) ∗B+

l
(l − k + b2)

= (2l − 2k + b1 + b2)
ε
B

+
l

= (l + l − 2k + b1 + b2)
ε
B

+
l

= l − 2k + b1 + b2

= φkl (b1 ∗B+
k
b2) .

Case II. If b1 + b2 − (k + 3) ∈ B+
k , then b1 ∗B+

k
b2 = b1 + b2 − (k + 3), and

φkl (b1 ∗B+
k
b2) = φkl (b1 + b2 − (k + 3))

= l − 2k + b1 + b2 − 3.

Note that l − 2k + b1 + b2 − 3 ∈ B+
l and l − 2k − b1 − b2 /∈ B+

l . The residue
2l − 2k + b1 + b2 ∈ Z/12 can be written as

l︸︷︷︸
∈K+

l

+ l − 2k + b1 + b2︸ ︷︷ ︸
/∈B+

l

or l + 3︸︷︷︸
∈K+

l

+ l − 2k + b1 + b2 − 3︸ ︷︷ ︸
∈B+

l

.

It follows that

φkl (b1) ∗B+
l
φkl (b2) = (l − k + b1) ∗B+

l
(l − k + b2)

= (2l − 2k + b1 + b2)
ε
B

+
l

= (l + 3 + l − 2k + b1 + b2 − 3)
ε
B

+
l

= l − 2k + b1 + b2 − 3

= φkl (b1 ∗B+
k
b2) .

Hence φkl : B+
k → B+

l is an isomorphism.

The proof of φkl : B−k → B−l is similar, considering the two cases where

b1 + b2 − k ∈ B−k or b1 + b2 − (k − 3) ∈ B−k . �

Propositions 4.1 and 4.2 contribute to the following.

Theorem 4.3. All 24 error-ball loops corresponding to perfect dominating sets
in the circulant C12(1, 5, 6) are isomorphic. Thus for residues k, l ∈ Z/12, there
is a commutative diagram

(4.1) (B+
k , ∗)

fk //

φk
l

��

(B−k , ∗)

φk
l

��
(B+

l , ∗) fl

// (B−l , ∗)
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of isomorphisms between the loops (B+
k , ∗), (B

−
k , ∗), (B

+
l , ∗) and (B−l , ∗).

Proof. It remains to confirm the commutativity of (4.1). The diagram chase

x � fk //
_

φk
l

��

2k − x_

φk
l

��
l − k + (2k − x)

lllllllllllll

lllllllllllll

l − k + x
�
fl

// 2l − (l − k + x)

performs that task. �
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Department of Mathematics

Amasya University
Amasya, 05000, Turkey

Email address: mehmet.dagli@amasya.edu.tr

Bokhee Im
Department of Mathematics
Chonnam National University
Gwangju 61186, Korea

Email address: bim@jnu.ac.kr

https://doi.org/10.1016/S0012-365X(02)00548-4
https://doi.org/10.1016/S0012-365X(02)00548-4
https://doi.org/10.1016/j.ipl.2007.02.004
https://doi.org/10.1016/j.ipl.2007.02.004
https://doi.org/10.1002/9781118032589
https://doi.org/10.1002/9781118032589


LOOP-TRANSVERSAL CODES 309

Jonathan D. H. Smith

Department of Mathematics

Iowa State University
Ames, Iowa 50011-2104, USA

Email address: jdhsmith@iastate.edu


