• Title/Summary/Keyword: current injection

Search Result 1,048, Processing Time 0.03 seconds

HALL EFFECTS ON HYDROMAGNETIC NATURAL CONVECTION FLOW IN A VERTICAL MICRO-POROUS-CHANNEL WITH INJECTION/SUCTION

  • BHASKAR, P.;VENKATESWARLU, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.103-119
    • /
    • 2020
  • In this work, the hydromagnetic and thermal characteristics of natural convection flow in a vertical parallel plate micro-porous-channel with suction/injection is analytically studied in the presence of Hall current by taking the temperature jump and the velocity slip at the wall into account. The governing equations, exhibiting the physics of the flow formation are displayed and the exact analytical solutions have been obtained for momentum and energy equations under relevant boundary conditions. The impact of distinct admissible parameters such as Hartmann number, Hall current parameter, permeability parameter, suction/injection parameter, fluid wall interaction parameter, Knudsen number and wall-ambient temperature ratio on the flow formation is discussed with the aid of line graphs. In particular, as rarefaction parameter on the micro-porous-channel surfaces increases, the fluid velocity increases and the volume flow rate decreases for injection/suction.

Study of harmonic reduction method in PWM Inverter of washing machine BLDC motor that use single current sensor (단일 전류 감지기를 이용한 세탁기 BLDC 모터의 PWM Inverter 에서 고조파 저감방법에 관한 연구)

  • Kim, Hwa-Sung;Yoo, Ji-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.142-144
    • /
    • 2007
  • This paper proposes problem improvement in existing method about three-phase current reconstruction method and present minimum voltage injection method and Smooth voltage injection method in single current sensor for washing machine motor drive. So, presented wash noise improvement method through ripple reduction in inverter. The simulation and experimental results are given to show the effectiveness of the proposed method for reconstructing the phase currents and reducing the noises.

  • PDF

Transient impedance characteristics of counterpoise according to the current injection position (전류인가위치에 따른 매설지선의 과도접지임피던스 특성)

  • Lee, Bok-Hee;Li, Feng;Lee, Song-Zhu;Yoo, Jae-Duk;Cho, Sung-Chul
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.328-331
    • /
    • 2009
  • This paper presents the behaviors of transient and conventional grounding impedances of a 30m counterpoise according to the injection point of lightning impulse currents. As a result, the trend of the conventional grounding impedances measured as a function of risetime of impulse current is similar to the transient grounding impedance of counterpoise. The injection point of impulse current greatly influences on the transient grounding impedance characteristics of counterpoise. The transient grounding impedances strongly depend on the injection point and the rising time of impulse current and the soil characteristics.

  • PDF

Synchronous Carrier-based Pulse Width Modulation Switching Method for Vienna Rectifier

  • Park, Jin-Hyuk;Yang, SongHee;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.604-614
    • /
    • 2018
  • This paper proposes a synchronous switching technique for a Vienna rectifier that uses carrier-based pulse width modulation (CB-PWM). A three-phase Vienna rectifier, similar to a three-level T-type converter with three back-to-back switches, is used as a PWM rectifier. Conventional CB-PWM requires six independent gate signals to operate back-to-back switches. When internal switches are operated synchronously, only three independent gate signals are required, which simplifies the construction of gate driver circuits. However, with this method, total harmonic distortion of the input current is higher than that with conventional CB-PWM switching. A reactive current injection technique is proposed to improve current distortion. The performance of the proposed synchronous switching method and the effectiveness of the reactive current injection technique are verified using simulations and experiments performed with a set of Vienna rectifiers rated at 5 kW.

IPMSM Sensorless Control Using Square-Wave-Type Voltage Injection Method with a Simplified Signal Processing (구형파 신호 주입을 이용한 IPMSM 센서리스 제어에서 개선된 신호처리 기법)

  • Park, Nae-Chun;Kim, Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • This paper presents an improved signal processing technique in the square-wave-type voltage injection method for IPMSM sensorless drives. Since the sensorless method based on the square-wave voltage injection does not use low-pass filters to get an error signal for estimating rotor position and allows the frequency of the injected voltage signal to be high, the sensorless drive system may achieve an enhanced control bandwidth and reduced acoustic noise. However, this sensorless method still requires low-pass and band-pass filters to extract the fundamental component current and the injected frequency component current from the motor current, respectively. In this paper, these filters are replaced by simple arithmetic operations so that the time delay for estimating the rotor position can be effectively reduced to only one current sampling. Hence, the proposed technique can simplify its whole signal process for the IPMSM sensorless control using the square-wave-type voltage injection. The proposed technique is verified by the experiment on the 800W IPMSM drive system.

Drawing Sinusoidal Input Currents of Series-Connected Diode Rectifiers by A Current Injection Technique (직렬접속형 다이오드 정류기 시스템의 전류주입에 의한 고조파 저감)

  • 최세완;오준용;원충연;김영석
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.346-349
    • /
    • 1999
  • This paper proposes a new series-connected diode rectifier which draws sinusoidal input currents. The proposed rectifier system is configured by adding an auxiliary circuit to the conventional 12-pulse series-connected diode rectifier and employing a current injection technique. A low kVA (0.02Po (PU) ) active current source injects a triangular current results in near sinusoidal input current from the utility with less than 1% THD. The resulting system is suitable for high voltage and high power applications. Experimental results is provided from a 220VA rectifier system.

  • PDF

Simultaneous Measurements of Drain-to-Source Current and Carrier Injection Properties of Organic Thin-Film Transistors

  • Majima, Yutaka
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.271-272
    • /
    • 2007
  • Displacement current $(I_{dis})$ and drain-to-source current $(I_{DS})$ are evaluated using the simultaneous measurements of source $(I_S)$ and drain $(I_D)$ currents during the application of a constant drain voltage and a triangular-wave gate voltage $(V_{GS})$ to top-contact pentacene thin-film transistors.

  • PDF

Analysis of Current-Voltage Characteristics Caused by Electron Injection in Metal-Oxide-Semiconductor Devices (전자주입에 의해 야기되는 MOS 소자의 전류-전압 특성 분석)

  • Jeon Hyun-Goo;Choi, Sung-Woo;Ahn, Byung-Chul;Roh, Yong-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.11
    • /
    • pp.25-35
    • /
    • 2000
  • A simple two-terminal cyclic current0voltage(I-V) technique was used to measure the current-transients in metal-oxide-semiconductor capacitors. Distinct charging/discharging currents were measured and analyzed as a function of the hold time, the delay time, the gate polarity during the FNT electron injection, the injection fluence and the annealing time after the injection had stopped. The charge-exchange current was distinguished from total current-transients containing the displacement current components. Charging/discharging current caused by the charge exchange was strongly dependent not only on the density of positive charges in the $SiO_2$, but also on the density of interface traps generated during the FNT electron injection. Several tentative mechanisms were suggested.

  • PDF

Effects of Temperature Change on the Current Injected MRI (전류 주입 자기공명영상에 온도 변화가 미치는 영향)

  • 이수열;강현수;우응제;조민형
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2001
  • It is well known that the electrical impedance of biological tissues is very sensitive to their temperature. In this paper, we have analyzed the effects of temperature change on the phase of magnetic resonance images obtained with external current injection. It has been found that the local phase in the current injected magnetic resonance image can be changed noticeably when local temperature change appears at a part of the tissue. At the experiments with a 0.3 Tesla MRI system, we observed the local phase changes at the phantom images when the phantom temperature was varied between 25 -45$^{\circ}C$. We think that the current injection MRI technique can be used for in-vivo monitoring of the temperature inside biiological tissues if the relation between the local temperature and phase can be quantified.

  • PDF

Hot-Carrier Induced GIDL Characteristics of PMOSFETs under DC and Dynamic Stress (직류 및 교류스트레스 조건에서 발생된 Hot-Carrier가 PMOSFET의 누설전류에 미치는 영향)

  • 류동렬;이상돈;박종태;김봉렬
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.12
    • /
    • pp.77-87
    • /
    • 1993
  • PMOSFETs were studied on the effect of Hot-Carrier induced drain leakage current (Gate-Induced-Drain-Leakage). The result turned out that change in Vgl(drain voltage where 1pA/$\mu$m of drain leadage current flows) was largest in the Channel-Hot-Hole(CHH) injection condition and next was in dynamic stress and was smallest in electron trapping (Igmax) condition under various stress conditions. It was analyzed that if electron trapping occurrs in the overlap region of gate and drain(G/D), it reduces GIDL current due to increment of flat-band voltage(Vfb) and if CHH is injected, interface states(Nit) were generated and it increases GIDL current due to band-to-defect-tunneling(BTDT). Especially, under dynamic stress it was confirmed that increase in GIDL current will be high when electron injection was small and CHH injection was large. Therefore as applying to real circuit, low drain voltage GIDL(BTDT) was enhaced as large as CHH Region under various operating voltage, and it will affect the reliablity of the circuit.

  • PDF