• 제목/요약/키워드: current control

검색결과 11,358건 처리시간 0.035초

Current Harmonics Rejection and Improvement of Inverter-Side Current Control for the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1672-1682
    • /
    • 2017
  • For grid-connected LCL-filtered inverters, the inverter-side current can be used as the control object with one current sensor for both LCL resonance damping and over-current protection, while the grid-voltage feedforward or harmonic resonant compensator is used for suppressing low-order grid current harmonics. However, it was found that the grid current harmonics were high and often beyond the standard limitations with this control. The limitations of the inverter-side current control in suppressing low-order grid current harmonics are analyzed through inverter output impedance modeling. No matter which compensator is used, the maximum magnitudes of the inverter output impedance at lower frequencies are closely related to the LCL parameters and are decreased by increasing the control delay. Then, to improve the grid current quality without complicating the control or design, this study proposes designing the filter capacitance considering the current harmonic constraint and using a PWM mode with a short control delay. Test results have confirmed the limitation and verified the performance of the improved approaches.

Current Dynamically Predicting Control of PMSM Targeting the Current Vectors

  • Sun, Hexu;Jing, Kai;Dong, Yan;Zheng, Yi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1058-1065
    • /
    • 2015
  • This paper present a current predicting control method for PMSM (permanent magnet synchronous motor) to improve the tracking performance of stator current, which regards the current vector as the control target. Solving the model state equation in the static frame (α-β frame), the dynamic change of current vector will be gained as three independent terms. These change terms, which contain the prediction of current vector, are discretized and simplified by Taylor series expansion and used to get the voltage vector as the predictive control quantity. SVPWM will transform the control voltage to the switching signal of inverter, which is newly deduced for the current vector. Simulation and experiment results are given to testy and verify the performance of this method.

제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법 (A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay)

  • 이진우
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.426-430
    • /
    • 2006
  • 본 논문에서는 제어 시지연을 갖는 고성능 PI 전류제어기에 대한 새로운 예측전류 적용방법을 모색한다. 먼저 선형 영구자석 동기전동기를 사용한 선형 서보 제어시스템에 존재하는 불가피한 전류예측 오차원인을 분석하고, 전류예측 오차와 제어 시지연을 고려한 전류제어 성능 개선 방법으로 수정된 동기좌표계 비간섭 PI 전류제어기를 제안한다. 그리고 시뮬레이션 및 실험 결과를 통하여 제안된 전류제어기가 서보 제어시스템에 존재하는 전류예측 오차와 제어 시지연이 있는 경우에도 개선된 전류제어응답을 보임을 검증하였다.

단일 DC-Link 전류 계측만을 이용한 BLDC 구동시스템의 디지털 전류 제어 (A Digital Current Control using Single DC-Link Current Sensing of BLDC Actuation Systems)

  • 한봉수
    • 한국군사과학기술학회지
    • /
    • 제22권1호
    • /
    • pp.72-80
    • /
    • 2019
  • In this paper, we propose a digital DC-Link current control approach for BLDC actuation systems. The proposed approach consists of the following two components: first, DC-Link current measurement with sampling instances synchronized with PWM frequency, and second, current control using single DC-Link current rather than three phases current of a motor. The proposed method proved its performance through experiments and simulation. The results showed that the control performance are increased compared with the BLDC actuation system which does not use current control.

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

아크 전류 차단을 위한 제어알고리즘 개발 (Control Algorithm Development for an Arc Current Interruption)

  • 반기종;김낙교
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권3호
    • /
    • pp.166-172
    • /
    • 2004
  • Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this Paper, arc current control algorithm is designed for the interruption of arc fault current which is occurred in the low voltage network. This arc Is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and high frequency. Conventional control algorithm does not have the arc current interrupt function. Hence, Control algorithm of arc current is designed for the interruption of arc fault current which has the modified arc characteristics.

영전류 스위칭 직렬공진형 컨버터의 평균전류모드제어 (The Average Current Mode Control of Zero Current Switched Series Resonant Converter)

  • 정영석;문건우;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.539-541
    • /
    • 1994
  • The average current mode control of zero current switched series resonant converter is proposed. The conventional current controllers such as bang bang current controller and predictive current cantroller have some demerits like current offset and complexity. In this paper, the proposed current control technique are conventional current control techniques are comparatively studied. By the proposed control technique. the current cantroller can be simplely implemented without current offset.

  • PDF

SVPWM을 이용한 PMLSM의 전류 제어 분석과 새로운 예측 전류 제어 (Analysis and Novel Predictive Control of current control for Permanent Magnet Linear Synchronous Motor using SVPWM)

  • 선정원;이진우;서진호;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.236-238
    • /
    • 2005
  • In this paper, we propose a new discrete-time predictive current controller for a PMLSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are that the measured stator current is tracked the command current value accurately and the transient interval is shorten as much as possible, in order to obtain high-performance of ac drive system. The conventional predictive current controller is hard to implement in full digital current controller since a finite calculation time causes a delay between the current sensing time and the time that take to apply the voltage to motor. A new control strategy is the schema that gets the fast adaptation of transient current change, the fast transient response tracking. Moreover, the simulation results will be verified the improvements of Predictive controller and accuracy of the current controller.

  • PDF

Design of a Luenberger Observer-based Current Sensorless Multi-loop Control for Boost Converters

  • Li, Xutao;Chen, Minjie;Shinohara, Hirofumi;Yoshihara, Tsutomu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제5권1호
    • /
    • pp.22-28
    • /
    • 2016
  • Multi-loop control of a boost converter needs a current-sensing circuit to detect the inductor current. Current sensorless multi-loop control reduces the cost, size and weight of the converter. The Luenberger observer (LO) is widely used to estimate the inductor current for current sensorless control of a switching converter. However, the design of the LO-based sensorless multi-loop control has not been well presented, so far. In this paper, a closed-loop characteristics evaluation method is proposed to design an LO-based current sensorless multi-loop control for boost converters. Simulations show evaluations of the closed-loop characteristics. Practical experiments on a digital processor confirm the simulations.

유도전동기의 강인 제어를 위한 뉴로-퍼지 설계 (Design of neuro-fuzzy for robust control of induction motor)

  • 송윤재;강두영;김형권;안태천
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.454-457
    • /
    • 2004
  • In this paper, control method proposed for effective speed control of the induction motor indirect vector control. For the induction motor drive, indirect vector control scheme that controls torque current and flux current of the stator current independently so that it can have improved dynamics. Also, neuro-fuzzy algorithm employed for torque current control in order to optimal speed control The proposed neuro-fuzzy algorithm can be applied to the precise speed control of an induction motor drive system or the field of any other power systems.

  • PDF