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Abstract: Multi-loop control of a boost converter needs a current-sensing circuit to detect the 
inductor current. Current sensorless multi-loop control reduces the cost, size and weight of the 
converter. The Luenberger observer (LO) is widely used to estimate the inductor current for current 
sensorless control of a switching converter. However, the design of the LO-based sensorless multi-
loop control has not been well presented, so far. In this paper, a closed-loop characteristics 
evaluation method is proposed to design an LO-based current sensorless multi-loop control for 
boost converters. Simulations show evaluations of the closed-loop characteristics. Practical 
experiments on a digital processor confirm the simulations.  
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1. Introduction 

The controller of a switching converter should first 
guarantee that the power conversion is stable under all 
operating conditions, and next, that the desired dynamic 
performance is maintained when a disturbance occurs in 
the circuit. For a single-loop output voltage controlled 
buck converter or a boost converter in discontinuous 
conduction mode, stability and dynamic performance can 
be guaranteed by making the loop gain as large as possible, 
with a high crossover frequency and an adequate phase and 
gain margin [1]. Nevertheless, there is a right-half-plane-
zero (RHPZ) [2] in the transfer function from the duty 
ratio to the output voltage for a boost, a buck-boost and a 
fly-back converter in continuous conduction mode (CCM). 
This RHPZ severely restricts the crossover frequency of 
the loop gain, and results in poor dynamic performance for 
single-loop voltage control. Multi-loop control is widely 
adopted to improve dynamic performance [3]. However, 
multi-loop control needs a current-sensing circuit, such as 
a shunt resistor with an amplifier, a transformer or an 
active filter to detect the inductor current [4], which results 
in an increase in the cost, size and weight of the circuit. 

Current sensorless multi-loop control solves this problem 
through an inductor current estimation approach: utilizing 
the integral of the voltage drop on the inductor to estimate 
the inductor current was introduced [5, 6], utilizing the 
predictive inductor current for peak current control was 
introduced [7, 8], and a state observer was introduced [9, 
10]. Investigations show that the Luenberger observer 
(LO) [11] is easy to understand and effective in estimating 
the inductor current for sensorless control of a converter. 

The dynamic performance of a converter is determined 
by its closed-loop characteristics, including audio-
susceptibility and output impedance [12]. For multi-loop 
control, the relationships between the loop gains and the 
closed-loop characteristics are generally indirect [13], and 
as a result, minimizing the audio-susceptibility and output 
impedance involves an iterative process. It is more difficult 
to design an LO-based sensorless multi-loop control for a 
converter, because there are more parameters relating to 
closed-loop characteristics. Although the LO-based 
sensorless control was introduced in previous papers [14, 
15], its design has not been well studied. Therefore, in this 
paper, a closed-loop characteristics evaluation method is 
proposed to design the LO-based current sensorless multi-
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loop control for boost converters in CCM. Simulations 
show evaluations of the closed-loop characteristics. 
Practical experiments on a digital processor confirm the 
simulations. 

2. The Proposed Design Method 

2.1 Block Diagram of LO-based Control 
The topology-independent block diagram for LO-based 

sensorless multi-loop control of a converter is shown in 
Fig. 1. The control system consists of an outer loop Tv, and 
an inner loop Ti. The outer loop provides a reference 
inductor current for the inner current loop. The symbols v̂o, 
v̂g, îo, and îL are the small signals of the converter. F1, F2, 
F3, F4, F5, and Zp are the transfer functions of the power 
stage. Fm and Fv are the inner and outer compensators, 
respectively. îLO is the estimated inductor current by the 
LO in Eq. (1): 

 

 ˆ ˆ( )o LOx Ax Bu L v v
•

= + + −  (1) 
 

where x = [îLO  v̂LO] is the estimated system state, and u is 
the observer input. The matrices A, B, and C come from 
the model of the converter, and L is the parameter of the 
LO. The transfer functions G3, G4, and G5 can be obtained 
through Laplace transformation of Eq. (1). 

2.2 Closed-loop Stability Evaluation 
Denote the current loop gain Ti = FmG4, and the voltage 

loop gain Tv = FmFvF2 + FmG5F2. The total gain at the point 
T1 and the outer gain at the point T2 are written in Eqs. (2) 
and (3), respectively. The closed-loop stability can be 
examined through the open-loop transfer functions given 
in Eqs. (2) and (3). 
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From Eqs. (2) and (3), it is known that the crossover 

frequency of current loop Ti should be as high as possible 
to provide a critical 900 phase boost for outer loop Tv, 
while its loop gain should be as small as possible at low 
frequencies. Loop gain Tv should be as large as possible to 
attenuate the disturbance on the output voltage. 

2.3 Closed-loop Performance Evaluation 
Dynamic performance of a converter is determined by 

its closed-loop dynamic characteristics. From Fig. 1, the 
closed-loop audio-susceptibility and the output impedance 
of output voltage are given in Eqs. (4) and (5), respectively. 
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The dynamic performance of inductor current i ̂L can 

be evaluated by the closed-loop characteristics in Eqs. (6) 
and (7). 
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Similarly, dynamic performance of estimated inductor 

current îLO can also be evaluated by the closed-loop 
characteristics in Eqs. (8) and (9). 
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3. Design of LO-based Sensorless Multi-
loop Control for Boost Converters 

3.1 Small Signal Average Value Model 
The boost converter used in this paper is shown in Fig. 

2, in which several parasitic components are considered. 
Its small signal average value model in CCM is written in 
Eq. (10): 
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ôi

ˆgv

d̂

L̂i

2T

1T

5G

3G

4G

L̂Oi

Fig. 1. Block diagram of LO-based sensorless control.
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Fig. 2. LO-based control of a boost converter. 
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where  x = [îL  v̂c], w = [v̂g  îo], and 
 

1

L sr Dr D
L LA
D
C RC

′+⎡ ⎤− −⎢ ⎥
⎢ ⎥=

′⎢ ⎥−⎢ ⎥⎣ ⎦

,  

1 0

10

LE

C

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

 

2

2

( ) ( )
( )

( )

s g s L D

L s

g D

L s

D R r V r r V
L r Dr D R

B
V D V

C r Dr D R

′ − + +⎡ ⎤
⎢ ⎥′+ +⎢ ⎥= ⎢ ⎥′−
⎢ ⎥−

′+ +⎢ ⎥⎣ ⎦

 

2

4 ( )( )
(1 1 )

2 ( ) ( )
s ref g L s ref D ref

ref D s ref g

rV RV R r r V V V
D

R V V rV RV
+ + +

′ = + −
+ +

 

 
The symbols îL, v̂c, v̂g, îo, and d̂ are the small signals, 

and v̂g and îo are the disturbances. The symbol D denotes 
the duty ratio at a given operating point, D' = 1‒D, and d̂ is 
the duty ratio adjustment from the given operation point. 
Ignoring the equivalent series resistance of the output 
capacitor, v̂c is equivalent to v̂o. For convenience, define 
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3.2 Transfer Functions in Fig. 1 
Through Laplace transformation of Eq. (10), the 

transfer functions F1, F2, F3, F4, F5, and Zp in Fig. 1 are 
obtained as follows: 
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where Δ = s2 – (a11 + a22)s + a11a22 – a12a21. Substituting 
the matrices A, B, and C in Eq. (10) into Eq. (1) and 
performing Laplace transformation, the transfer functions 
G3, G4, and G5 in Fig. 1 are obtained as follows: 
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where Λ = s2 – (a11 + a22 – l2)s + a11a22 – a12a21 – a11l2 + 
a21l1, and l1 and l2 are the elements of L in Eq. (1). The PI 
controllers in Eqs. (20) and (21) are used in Fig. 1 as 
compensators Fm and Fv, respectively. 
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Let C = [0  1]. The LO in Eq. (1) is written in Eq. (22). 
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where x̂ = [îLO  v̂LO] is the estimated system state, and u = 
[d̂  v̂g] is the observer input. The controllers in Eqs. (20) 
and (21), and the LO in Eq. (22), can be designed by the 
closed-loop evaluations given in Eqs. (2)-(7), and (8). 

4. Simulations and Experiments 

A boost converter with the parameters listed in Table 1 
is used to show the design of the LO-based sensorless 
current multi-loop control. 

 
Table 1. Parameters of a Boost Converter. 

Parameters Values 
Input voltage  vg = 10 V 

Output voltage vo = 20 V 
Output capacitor C = 1000 μF 

Inductor L = 47μH , rL = 24 mΩ 
Load R = 25 mΩ 

Switch S rs = 36 mΩ 
Diode D vD = 1.25 V 

Switching frequency fs = 150 kHz 
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4.1 Simulations of Closed-loop Stability 
and Characteristics 

First, determine parameter L of the LO in Eq. (22) by 
eigenvalue assignment A–LC. After an iterative process, 
the eigenvalues {–0.0093, –7.5003}×105 are found to be 
suitable, and correspondingly, L = [0.01 0.75]T×106. Next, 
determine the parameters of compensators Fm and Fv in 
Eqs. (20) and (21). As presented in Section 2, the 
crossover frequency of the current loop Ti = FmG4 should 
be as high as possible to provide a 900 phase boost for the 
outer loop Tv = FmFvF2 + FmG5F2, while its loop gain 
should be as small as possible. Loop gain Tv should be as 
large as possible to attenuate the disturbance on the output 
voltage. After an iterative process, Fm = 0.2 + 250/s and Fv 
= 30 + 18000/s are found to be suitable. The bode plots of 
T1 and T2 in Fig. 1 are given in Fig. 3. Gain T1 has a 
crossover frequency of 12.9 kHz, which is about 1/11.6 of 
switching frequency fs, with a phase margin of 78.8°. Gain 
T2 has a crossover frequency of 2.3 kHz, which is about 
1/5.7 of T1, with a phase margin of 73.5° and a gain 
margin 18.8 dB. It can be said that the LO in Eq. (22) and 
the compensators in Eqs. (20) and (21) are well designed, 
and a stable control system is guaranteed. 

The closed-loop characteristics of the output voltage, 

the inductor current, and the estimated inductor current are 
shown in Figs. 4, 5 and 6, respectively. 

The step responses for output voltage are shown in Fig. 
7. The step responses of inductor current îL and the 
estimated inductor current îLO are shown in Fig. 8. It shows 
that the estimated inductor current perfectly estimates the 
inductor current when the input voltage is disturbed, while 

 

         
                                (a) Audio-susceptibility                                                      (b) Output impedance 

Fig. 4. Closed-loop characteristics (v ̂o ). 

 

         
                                (a) Audio-susceptibility                                                      (b) Output impedance 

Fig. 5. Closed-loop characteristics (i ̂L ). 

 

Fig. 3. Bode plots of T1 and T2. 
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there is a slight error between îL and îLO when the load 
current is disturbed. 

4.2 Practical Experiments 
The LO and controllers need to be discretized to 

execute on a digital processor. The discrete counterpart of 
Eq. (22) is obtained in Eq. (23) by zero-hold discretization. 
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                                (a) Audio-susceptibility                                                      (b) Output impedance 

Fig. 6. Closed-loop characteristics (i ̂LO). 
 

         
              (a) Step response of v̂o to a step change in v̂g                 (b) Step response of v̂o to a step change in îo 

Fig. 7. Step response of v̂o. 
 

         
       (a) Step responses of i ̂L and îLO to a step change in v̂g   (b) Step responses of îL and îLO to a step change in îo 

Fig. 8. Step responses of îL and îLO. 
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where  Δv̂O(k) = v̂O(k) – v̂LO(k), and 
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L
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The discrete counterparts of Eqs. (20) and (21) are 

obtained in Eqs. (24) and (25), respectively, by the 
backward difference s = 1–z−1/Ts, where Ts is the switching 
period. 

 
 10.2 0.0017(1 )mF z−= + −   (24) 

130 0.1200(1 )vF z−= + −    (25) 

 
An NJU20010 digital processor produced by New 

Japan Radio Corp. is used to execute the above discrete 
LO and controllers. The limit of the duty ratio is set to 
0.05~0.88. The slew rates of the load and the input voltage 
are 250mA/μs and 2.0V/μs, respectively. The practical 
dynamic responses are shown in Fig. 9. 

The experimental environment is shown in Fig. 10. 

 
 

 
(a) Dynamic response of v̂o to a disturbance in v̂g 

 

 
(b) Dynamic response of v̂o to a disturbance in îo 

Fig. 9. Practical dynamic responses of v̂o. 

DSP boardsimulator

normal load

input voltage

 

Fig. 10. Experimental environment. 

5. Conclusion 

The LO can be used to estimate the inductor current for 
sensorless control of a converter. A closed-loop evaluation 
method is proposed to design an LO-based sensorless 
current multi-loop control for boost converters, with a 
design process as follows: select the parameters of the LO; 
design the controllers; evaluate closed-loop stability; 
evaluate the closed-loop characteristics; repeat the above 
design process until the desired dynamic performance is 
achieved. 
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