• Title/Summary/Keyword: curing temperature.

Search Result 1,346, Processing Time 0.026 seconds

Curing Kinetics and Chemorheological Behavior of No-flow Underfill for Sn/In/Bi Solder in Flexible Packaging Applications

  • Eom, Yong-Sung;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong;Lee, Jin-Ho
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1179-1189
    • /
    • 2016
  • A chemorheological analysis of a no-flow underfill was conducted using curing kinetics through isothermal and dynamic differential scanning calorimetry, viscosity measurement, and solder (Sn/27In/54Bi, melting temperature of $86^{\circ}C$) wetting observations. The analysis used an epoxy system with an anhydride curing agent and carboxyl fluxing capability to remove oxide on the surface of a metal filler. A curing kinetic of the no-flow underfill with a processing temperature of $130^{\circ}C$ was successfully completed using phenomenological models such as autocatalytic and nth-order models. Temperature-dependent kinetic parameters were identified within a temperature range of $125^{\circ}C$ to $135^{\circ}C$. The phenomenon of solder wetting was visually observed using an optical microscope, and the conversion and viscosity at the moment of solder wetting were quantitatively investigated. It is expected that the curing kinetics and rheological property of a no-flow underfill can be adopted in arbitrary processing applications.

Field Application of Insulation Curing Method with Double Bubble Sheets Subject to Cold Weather (이중버블시트를 이용한 단열양생공법의 한중콘크리트 현장적용)

  • Hong, Seak-Min;Lee, Il-Sun;Baek, Dae-Hyun;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.25-28
    • /
    • 2009
  • This study investigated the results of insulation heat curing method using double layer bubble sheet in slab concrete in cold weather environment. First of all, when double bubble sheets are applied, it was shown that slab concrete was protected from early freezing by remaining between 5 and $l0^{\circ}C$ even in case outside temperature drops $-11^{\circ}C$ below zero until the 4nd day from piling. The insulation heat preservation curing method using the double bubble sheet applied in this field prevented early freezing owing to stable curing temperature management, deterring concrete strength development delay at low temperature, and obtained the needed strength. Also, it was proven that the method is highly effective and economic for cold weather concrete quality maintenance through curing cost reduction like construction period shortening and labor cost reduction, etc by reducing the process of temporary equipment installation and disassembling.

  • PDF

Effect of Curing Conditions on the Strength of Fly-Ash Based Geopolymer (양생조건이 플라이애쉬 기반 지오폴리머 강도에 미치는 영향)

  • Cho, Young-Keun;Moon, Gyu-Don;La, Jung-Min;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.449-456
    • /
    • 2014
  • Material properties of geopolymer, whose the reaction is very complicated, have been influenced by chemical compositions and particle size distributions of fly ash, concentrations and types of alkali-activators and curing conditions such as temperatures and time. In this research, experiments with several variables such as curing temperatures, preset prior to the high temperature curing and high temperatures have been conducted in order to evaluate to investigate effects on the compressive strengths of geopolymer caused by curing condition. Experiment results were evaluated with compressive strengths and micro-structures such as SEM and MIP of geopolymer pastes. As a result, as higher curing temperature or longer preset time were applied to the pastes, higher compressive strengths were observed. However, compressive strengths of geopolymer pastes declined due to increases in macropores (>50 nm) under high temperatures elapsed after 24 hours. In this sense, it can be considered that strengths and microstructures of geopolymers depends on curing temperature and time.

Temperature History of Concrete Corresponding to Various Bubble Sheets Layer and Curing Temperature (양생온도 변화 및 버블시트 두께변화에 따른 콘크리트의 온도이력특성)

  • Hong, Seak-Min;Baek, Dae-Hyun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.21-25
    • /
    • 2008
  • In this paper, the temperature history and the strength development of concrete corresponded to various bubble sheets layer and curing temperature. Based on the results, In case of the test temperature of -5℃, concrete subject in the exposure condition, result in a frost damage at initial stage by a fall of below zero temperature. In case of the combination of PE film and non woven fabric was after 36 hour, and combination of bubble sheet over double, a tremendous insulating effect of bubble sheet over double is confirmed due to the temperature of concrete fall of below zero temperature after 60 hours. Meanwhile, regarding the -15℃ of temperature, special measure for insulation curing is necessary to secure stability against early frost damage because frost damage was not affected by the lapping thickness of bubble sheet subjected to severe cold weather condition.

  • PDF

Effect of Curing Temperature and Autofrettage Pressure on a Type 3 Cryogenic Propellant Tank (경화온도와 자긴 압력이 Type 3 극저온 추진제 탱크에 미치는 영향 연구)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kong, Cheol-Won;Kim, Chun-Gon
    • Composites Research
    • /
    • v.19 no.4
    • /
    • pp.31-38
    • /
    • 2006
  • In this study, effects of curing temperature and autofrettage pressure on a Type 3 cryogenic propellant tank, which is composed of composite hoop/helical layers and a metal liner, were investigated by thermo elastic analysis and composite/aluminum ring specimen tests. Temperature field of a Type 3 tank was obtained from solving the heat transfer problem and, in turn, was used as nodal temperature boundary conditions during the elastic analyses for curing temperature and autofrettage pressure effects. As a result, it was shown that the higher curing temperature was, the more residual compressive stress and tensile stress were induced in composites and metal liner, respectively. On the contrary, autofrettage pressure brought the reduction of these residual thermal stresses caused by cryogenic environments to the tank structure. This tradeoff for curing temperature and autofrettage pressure must be considered in the design and manufacturing stages for a Type 3 cryogenic tank.

Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics (미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델)

  • 황수덕;김의태;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

Application of Curing Method Using the Heating Cable for Cold Weather Concreting (매입형 열선에 의한 한중콘크리트의 보양방법 적용에 관한 연구)

  • 김형래;이정철;김찬수;이명진;김봉주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.769-774
    • /
    • 2001
  • The purpose of this study is to analyze the curing effect of heating cable for concreting in cold weather. An experiment was conducted to evaluate the temperature history of concrete structures cured with embedded heating cables. Results are as follows : In comparison with the non-heating case, applying of heating cable resulted in the rise of temperature in the range of $10^{\circ}C$. In order to get successful results, the optimal pitch length for the embedded heating cables ranged from 20cm to 25cm. When working with the existing curing methods, applying this heating cable would be more effective in concrete curing. Finally, a formula and process was suggested to predict the Internal temperature history of concrete structures under the various curing conditions.

  • PDF

Temperature History of Wall Concrete with Heat Insulating Curing Method Subjected to Severly Cold Climate (혹한온도 조건에서의 양생방법 변화에 따른 벽체 콘크리트의 온도이력 특성)

  • Son, Ho-Jung;Han, Sang-Yoon;Cheong, Sang-Hyeon;Ahn, Samg-Ku;Han, Cheon-Goo;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.51-52
    • /
    • 2011
  • This study is to propose a curing method for a concrete wall structure under severe cold climate. The curing methods of using heated cable, heated panel and insulated form were applied. Results showed that the concrete cured by the heated cable resulted in the highest temperature history and the highest strength development at 28 days. Further, it is believed that the curing methods of the heated panel and insulated form are also recommendable for the resistance of the early frost damage on the concrete in practice.

  • PDF

ANOVA for Water Repellent Finish data (발수가공 데이터의 분산분석)

  • Yun, Jung-Beom
    • Journal of Korean Society for Quality Management
    • /
    • v.16 no.1
    • /
    • pp.43-48
    • /
    • 1988
  • Most of silicone used for water repellent finish is MHP (methyl hydrodiene polysiloxane), which is formed by hydrolysis and condensation polymerization of MHD (methyl hydrodiene dichlorosilane: Me H Si $Cl_2$). The cross-linking theory explains the water repellent mechanism of MHP. The silicone finish on fiber could improve in handle, softness, abrasion resistance, soil repellency, tear strength and crease resistance, as well as water repellency. According to using method silicone-water repellent finishing agents, could be devided into air dry type and curing type. MHP is the typical curing type of water repellent finishing agent, and this type requires the curing temperature above $150^{\circ}C$ at least. High curing temperature is the very drawback of this curing type. For this reason, there has been global interest in the lowering of its temperature. The objective of this study is to investigate merits of alkali treatment for silicone finishing by ANOVA and LSD (least significant difference).

  • PDF

Review on Carbonation Curing and Thermal Stability of Calcium Sulfoaluminate Cement (칼슘설포알루미네이트 시멘트의 탄산화 양생과 열 안정성에 관한 검토)

  • Wu, Xuanru;Kunal Krishna, Das;Jang, Jeong Gook
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.53-54
    • /
    • 2023
  • In recent decades, climate change has become an issue of global importance. The calcium sulfoaluminate (CSA) cement emits lower CO2 than the Portland cements while manufacturing. However, ettringite, which is a main hydration product of CSA cement, starts dehydrating at a temperature above 100℃, hence it may limit the CSA cement for high temperature application. Recently, an early carbonation curing of cement-based material has been extensively studied in terms of carbon neutralization. The carbonation curing of CSA cement has a potential to transform the AFt and AFm phases into calcium carbonate, and the transformation of unstable hydrates to stable hydrates can increase the resistance to elevated temperature. This review study summarizes and discusses the carbonation curing effect of CSA cement and the thermal stability of CSA cement exposed to elevated temperatures.

  • PDF