• Title/Summary/Keyword: curing temperature

Search Result 1,336, Processing Time 0.022 seconds

Setting Time and Strength of Slip-form Method Applied Caisson in Low-temperature Period (슬립폼공법 적용된 동절기 케이슨의 온도에 따른 응결시간 및 압축강도)

  • Kim, Bong-Joo;Kim, Jae-Hun;Kim, Chan-Soo;Jo, Ho-Kyoo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.1-7
    • /
    • 2006
  • In the harbor construction work, caisson is made by slip-form method and curing temperature of caisson concrete need heating in the low-temperature. To get the setting time and compression strength of slip-form method applied caisson at various curing temperature. The curing temperature is divided to the temperature of slip-form and the temperature of second curing curtain. In consideration of setting time, compression strength of concrete and form-removal time, the best temperature is $25^{\circ}C$ at 6 hours slip-form curing time.

Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC

  • Djamila, Boukhelkhal;Othmane, Boukendakdji;Said, Kenai;El-Hadj, Kadri
    • Advances in concrete construction
    • /
    • v.6 no.1
    • /
    • pp.69-85
    • /
    • 2018
  • In order to provide sufficient stability and resistance against bleeding and segregation during transportation and placing, mineral admixtures are often used in self-compacting concrete mixes (SCC). These fine materials also contribute to reducing the construction cost and the consumption of natural resources. Many studies have confirmed the benefits of these mineral admixtures on properties of SCC in standard curing conditions. However, there are few published reports regarding their effects at elevated curing temperatures. The main objective of this study is to investigate the effect of three different mineral admixtures namely limestone powder (LP), granulated blast furnace slag (GS) and natural pozzolana (PZ) on mechanical properties and porosity of SCC when exposed to different curing temperatures (20, 40, 60 and $80^{\circ}C$). The level of substitution of cement by mineral admixture was fixed at 15%. The results showed that increasing curing temperature causes an improvement in performance at an early age without penalizing its long-term properties. However the temperature of $40^{\circ}C$ is considered the optimal curing temperature to make economical and high performance SCC. On the other hand, GS is the most suitable mineral admixture for SCC under elevated curing temperature.

Bench-Curing Acrylic Resins (ACRYLIC RESIN의 BENCH-CURING에 관하여)

  • Kim, Hyun-Mi
    • Journal of Technologic Dentistry
    • /
    • v.12 no.1
    • /
    • pp.103-106
    • /
    • 1990
  • The purpose of this study was to determine if homogeneity of the resin associated with benchcuring could be obtained in the curing unit as the water increased from room temperature to curing temperature. The results of the experiment were as follows : 1. Long periods of bench-curing are not necessary. 2. Bench-curing can take place in the water bath of the curing unit. When this procedure is used, the water should be far enough below the temerature at which active polymerization of the resin proceeds to allow the bench-curing to occur.

  • PDF

A Study on the Effect of Accelerated Curing on 28-Days Compressive Strength of Concrete (촉진양생이 콘크리트의 28일 압축강도에 미치는 영향에 관한 연구)

  • 최세규;유승룡;김생빈
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.4
    • /
    • pp.141-148
    • /
    • 1996
  • The pulished works on Accelerated Curing Effect were generally performed around from 1960 to 1970th century for 18 to 24 hours - total curing periods. It is not possible to define the effect of temperature rise because those results were obtaine mainly by using the manually operated steam-curing tank. Thus, it may not be available to apply those data immediately on the domestic PC wall production line. The testing specimens were made from the standard mix proportion according to those of domestic PC factories to establish a basic data for the Accelerated Curing Effect. The experimental tests were conducted according to the conditions of each sub-curing periods. By comparing the results of compression tests on de-molded and 28-day water-curing specimens, we find that the most effective curing condition to obtain more than the required design strength after 28 day of water curing may be as follows: the presteaming period does not affect seriously and less than$30^{circ}C/hr$- the rate of temperature rise andless than $82^{circ}C$ - maximum temperature are necessary. It seems that post-curing procedure is very important factor to increase the effect of accelerated curing.

Studies on the Effect of Water Content, Curing Temperature and Grain Size Distribution of Soils on Unconfined Compressive Strength of Soil-Cement Mixtures. (함수비, 양생온도 및 흙의 입도가 Soil-Cement의 압축강도에 미치는 영향에 관한 연구(I))

  • 김재영;강신업
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.1
    • /
    • pp.4312-4322
    • /
    • 1977
  • In order to investigate the effect of the water content and the accelerated curing on the strength of the soil-cement mixtures, laboratory test of soil cement mixtures was performed at five levels of water content, four levels of accelerated curing temperatures, three levels of normal curing periods, and six levels of accelerated curing time. Also this study was carried out to investigate the effect of grain size distribution of 21 types of soils on the strength of soil-cement mixtures at four levels of cement content and three levels of curing time. The results are summarized as follows: 1. Optimum moisture content increased with increase of the cement content, but maximum dry density was changed ununiformly with cement content. Water content corresponding to the maximum strength was a little higher than the optimum moisture content along the increase of cement content. 2. In molding the specimens with the optimum moisture content, the maximum strength appeared at the wet side of the optimum moisture content. 3. According to increase of curing temperature as 30, 40, 50, and 60$^{\circ}C$, unconiiend compressive strength of soil-cement mixtures increased, the rate of increase at the early curing period was large, and approximately 120 hours was suifficient to harden soil-cement mixtures completely. 4. The strength of soil-cement mixtures at the curing temperature of 10$^{\circ}C$ decreased at the rate of 30 to 50 percent than at the curing temperature of 20$^{\circ}C$, and the strength of soil-cement mixtures at the curing temperature of 0$^{\circ}C$ increased a little with increase of curing time. 5. Although the strength of soil-cement mixtures seemed to be a little affected by the temperature difference between day time and night, it was recommended that reasonable working period was the duration from July to August of which average maximum temperature of Korea was approximately 30$^{\circ}C$. 6. Accelerated curing time corresponding to the normal curing time of 28-day was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mixtures for the cement of 9 percent and the curing temperature of 60was shorten with increase of curing temperature, also it was a little affected by the cement. Accelerated curing time that the strength of soil-cement mix- tures for the cement of 9 percent and the curing temperature of 60$^{\circ}C$ was 45 hours at the KY sample, 50 hours at the MH, 40 hours at the SS, and 34 hours at the JJ respectively. 7. Accelerated curing time was depended upon the grain size distribution of soil, it decreased with increase the percent passing of No. 200 sieve. 8. Relationship between the normal curing times and the accelerated curing times showed that there was a linear relationship between them, its slope decreased with increase of curing temperature. 9. The most reasonable soil of the soil-cement mixtures was the sandy loam which was a well graded soil. Assuming the base of road requiring 7-day strength of 21 kg/$\textrm{cm}^2$ being used, the soil-cement mixtures could be obtained with adding 6 percent of cement in such a sails S-7, S-8, S-9, S-10, S-11, S-12, S-13. 10. The regression equation between the 28-day and the 7-day strength was obtained as follow; q28=1.12q7,+6.5(r=0.96).

  • PDF

Effect of Curing Temperature on Geopolymeric Polycondensation of Blast Furnace Slag (고로슬래그의 지오폴리머 축중합반응에 미치는 양생온도의 영향)

  • Jeon, Chang-Seob;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.6
    • /
    • pp.610-616
    • /
    • 2011
  • The effect of curing temperature on basic geopolymeric reactivity and hardening behaviour of blast furnace slag were investigated using the mixture of pulverized slag and several alkaline solutions of relatively high concentration. For the pastes prepared at several different temperatures between 20$^{\circ}C$ and 90$^{\circ}C$, setting time and heat of reaction were examined while mineralogical and morphological examinations were performed for the hardened paste after curing period at same temperature. The geopolymeric reaction of slag was revealed to be accelerated strongly according to the curing temperature regardless of the sort and concentration of the alkaline solution. The increase of concentration of the alkaline solution within 9M and the existence of silicic ion in the solution also promoted the reaction severely. The mineral component and their ratio of the hardened paste were revealed to be influenced by the chemical species and silicic ion contained in alkaline solution rather than by the curing temperature. The higher temperature and longer period of curing stage were effective for the sustained formation of geopolymer and succeed improvement of density and uniformity of morphology of the final hardened body.

INTRAPULPAL TEMPERATURE CHANGE OF GLASS IONOMER ACCORDING TO LIGHT CURING INTENSITY AND CURING TIME (광중합기의 광도와 시간에 따른 글래스 아이오노머의 치수내 온도변화)

  • 김희량;이형일;이광원;이세준
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.387-392
    • /
    • 2001
  • When cavity floor is near the pulp, polymerization of light-activated restorations results in temperature increase. This temperature increase cause by both the exothermic reaction process and the energy absorbed during irradiation. Therefore instating base is required. Most frequently used insulating base is glass ionmer. The purpose of this study was to evaluate intrapulpal temperature changes of glass ionomer according to various curing intensity and curing time. Caries and restoration-free mandibular molars extracted within three months were prepared Class I cavity of 3$\times$6mm with high speed handpiece. 1mm depth of dentin was evaluated with micrometer in mesial and distal pulp horns. Pulp chambers were filled with 37.0$\pm$0.1$^{\circ}C$ water to CEJ. Chromium-alumina thermocouple was placed in pulp horn for evaluating of temperature changes. glass ionomer material was placed in 2mm. total curing time was 40s: continuous 40s, intermittent 20s, intermittent 10s. Glass ionomer material was cured with 300mW/$\textrm{cm}^2$, 550mW/$\textrm{cm}^2$ light curing unit. The results were as follows : 1. Temperature in pulp increased as curing unit power is increased. 2. Temperature in pulp more increased continuous emission than intermittent emission.

  • PDF

A Study on the Curing of Concrete in field (콘크리트의 현장양생효과에 관한 연구)

  • 윤충섭;조병진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.3
    • /
    • pp.46-58
    • /
    • 1984
  • This study was carried out to investigate the compressive strength and the other effects varying to seasons and curing days on the wet curing conditions of the plain concrete. The results obtained are summarized as follows; 1. The longer the wet curing days and the higher the temperature, the greater the compressive strength was expected. 2.。$_2$8, compressive strength of concrete at 28 days under the dry curing conditions showed a range in 64-76% of that under the wet curing conditions. 3. The seasonal variations in the compressive strength under the wet curing showed in order of summer>spring=autumn>winter, and that under the dry curing were in order of spring ≒autumn> summer> winter. 4. In order to obtain 90% of the design compressive strength, 7 days in spring or autumn and 2 weeks of the wet curing in summer were required. 5. The compressive strength of concrete under the wet curing by using wet straw bag cover was almost the same as that of water curing method. 6. Under the wet curing conditions, the higher the temperature, the greater the effect of the curing of concrete was obtained, however, the compressive strength of concrete was decreased under relatively higher (over 15$^{\circ}$ C) and lower temperature (below 4$^{\circ}$C). 7. Freezing damage was occured when temperature was below 0$^{\circ}$ C and humidity was relatively high. 8. A considerable differnce between estimation of $^{\circ}$$_2$8 from $^{\circ}$7 and measured one was appeared in case of the dry curing conditions. Oregon formula was appeared to be acceptable under the wet curing conditions. 9. In relationship between $^{\circ}$$_2$8 and $^{\circ}$7~, $^{\circ}$28=1. 52 $^{\circ}$7 under the wet curing conditions except winter season, and $^{\circ}$$_2$8 =(1.39-1, 48)$^{\circ}$7 under the dry curing conditions were shown.

  • PDF

An experimental Study for the Maximun Curing Temperature Effect on the Freezing and Thawing of Steam Curing Concrete (증기양생콘크리트의 최고양생온도변화가 콘크리트의 동결융해저항성에 미치는 영향)

  • Youn, Suk;Choi, Se-Gyu;Kim, Dong-Sin;Yu, Sung-Yong;Kim, Saeng-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.170-176
    • /
    • 1997
  • The published works on steam curing effect have been generally concentrated on the subject, "compressive strength". However a practical test for durable steam curing concrete products has not been performed in domestic. In this study, the maximum temperature of steam is considered as a major variable to investigate the freezing and thawing resistance of the steam curing concrete. All of the specimen were cured for 24 hours which included presteaming 4 hour. Finally we found that the most effective curing condition is the case of one-day and 14-day specimens after the 24 hours steam curing at $74^{\cire}C$ degree curing temperature. It is also found that the durability of one-day samples are much weaker than those of 14-day samples. Consequently, we can conclude that the samples that produced immediately after a steam curing are more possible to deteriorate from the freezing and thawing environment.vironment.

  • PDF

Temperature History of the Concrete Cured by the Curing Sheet made with Double Layered Bubble Sheet (개량형 2중버블시트 양생막에 의한 온도이력 특성)

  • Kim, Jun-Ho;Son, Ho-Jeong;Son, Myeong-Sik;Kyung, Yeong-Hyeok;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.81-83
    • /
    • 2012
  • This paper is to compare the temperature history of the concrete using existing curing sheet and developed curing sheet made with double layered bubble sheet subjected to clod climate. Field application was conducted. According to results, application of developed curing sheet makes the temperature of curing house and concrete higher than existing curing sheet by about 3℃. This is due to the lower thermal conductivity of developed curing sheet.

  • PDF