• Title/Summary/Keyword: cuboidal design

Search Result 9, Processing Time 0.027 seconds

Evaluation of the Block Effects in Response Surface Designs with Random Block Effects over Cuboidal Regions

  • Park, Sang-Hyun
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.3
    • /
    • pp.741-757
    • /
    • 2000
  • In may experimental situations, whenever a block design is used, the block effect is usually considered to be fixed. There are, however, experimental situations in which it should be treated as random. The choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of he prediction variance even if the experimental runs re the same. Therefore, care should be exercised in the selection of blocks. In this paper, in the presence of a random block effect, we propose a graphical method or evaluating the effect of blocking in response surface designs using cuboidal regions. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout all experimental regions of interest when this region is cuboidal, and compare the block effects in the cases of the orthogonal and non-orthogonal block designs, respectively.

  • PDF

A Graphical Method for Evaluating the Effect of Blocking in Response surface Designs Using Cuboidal Regions

  • Sang-Hyun Park;Dae-Heung Jang
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.607-621
    • /
    • 1998
  • When fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance even if the experimental runs are the same. Therefore, care should be exercised in the selection of blocks. In this paper, we prognose a graphical method for evaluating the effect of blocking in a response surface designs using cuboidal regions in the presence of a fixed block effect. This graphical method can be used to investigate how the blocking has influence on the prediction variance throughout the entire experimental region of interest when this region is cuboidal, and compare the block effect in the cases of the orthogonal and non-orthogonalblockdesigns, resfectively.

  • PDF

Model-Robust G-Efficient Cuboidal Experimental Designs (입방형 영역에서의 G-효율이 높은 Model-Robust 실험설계)

  • Park, You-Jin;Yi, Yoon-Ju
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.118-125
    • /
    • 2010
  • The determination of a regression model is important in using statistical designs of experiments. Generally, the exact regression model is not known, and experimenters suppose that a certain model form will be fit. Then an experimental design suitable for that predetermined model form is selected and the experiment is conducted. However, the initially chosen regression model may not be correct, and this can result in undesirable statistical properties. We develop model-robust experimental designs that have stable prediction variance for a family of candidate regression models over a cuboidal region by using genetic algorithms and the desirability function method. We then compare the stability of prediction variance of model-robust experimental designs with those of the 3-level face centered cube. These model-robust experimental designs have moderately high G-efficiencies for all candidate models that the experimenter may potentially wish to fit, and outperform the cuboidal design for the second-order model. The G-efficiencies are provided for the model-robust experimental designs and the face centered cube.

Multi-response Designs Minimizing Model Inadequacies

  • Bae, Whasoo
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.799-808
    • /
    • 2002
  • This paper aims at selecting the multi-response design with γ responses minimizing the bias error caused by fitting inadequate models to responses, where the first order models are fitted to Ρ responses fearing the quadratic bias, while to other γ- Ρ responses, the quadratic models are fitted fearing the cubic biases in the cuboidal region of interest. Under the assumption of symmetric design, by minimizing the criterion which represents the amount of error caused by fitting inadequate models, the optimum design was found to be the one having the design moments of second order and the fourth order as 1/3 and l/5, respectively. Examples of the design meeting the required conditions are given for illustration.

3-Level Response Surface Design by Using Expanded Spherical Experimental Region (확장된 구형설계를 이용한 반응표면설계)

  • Kim, Ha-Yan;Lee, Woo-Sun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.215-223
    • /
    • 2012
  • Response surface methodology(RSM) is a very useful statistical techniques for improving and optimizing the product process. By this reason, RSM has been utilized extensively in the industrial world, particularly in the circumstances where several product variables potentially influence some quality characteristic of the product. In order to estimate the optimal condition of product variables, an experiment is being conducted defining appropriate experimental region. However, this experimental region can vary with the experimental circumstances and choice of a researcher. Response surface designs can be classified, according to the shape of the experimental region, into spherical and cuboidal. In the spherical case, the design is either rotatable or very near-rotatable. The central composite design(CCD)s widely used in RSM is an example of 5-level and spherical design. The cuboidal CCDs(CCDs with ${\alpha}=1$) is appropriate when an experimental region is cuboidal but this design dose not satisfy the rotatability as it is not spherical. Practically, a 3-level spherical design is often required in the industrial world where various level of experiments are not available. Box-Behnken design(BBD)s are a most popular 3-level spherical designs for fitting second-order response surfaces and satisfy the rotatability but the experimental region does not vary with the number of variables. The new experimental design with expanded experimental region can be considered if the predicting response at the extremes are interested. This paper proposes a new 3-level spherical RSM which are constructed to expand the experimental region together with number of product variables.

A Measure for Evaluating the Effect of Blocking in Response Surface Designs Using Cuboidal Regions (입방형 영역을 사용한 반응표면계획에서 블록효과를 평가하기 위한 측도)

  • 박상현;장대흥
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.1
    • /
    • pp.59-79
    • /
    • 1999
  • The fitting of a response surface model and the subsequent exploration of the response surface are usually based on the assumption that the experimental runs are carried out under homogeneous conditions. This, however, may be quite often difficult to achieve in many experiments. To control such an extraneous source of variation, the response surface design should be arranged in several blocks within which homogeneity of conditions can be maintained. In this case, when fitting a response surface model, the least squares estimates of the model's parameters and the prediction variance will generally depend on how the response surface design is blocked. That is, the choice of a blocking arrangement for a response surface design can have a considerable effect on estimating the mean response and on the size of the prediction variance. In this paper, we propose a measure for evaluating the effect of blocking of response surface designs using cuboidal regions.

  • PDF

Some 3-Level Spherical Designs for Response Surface Experiments: Designs Constructed for the Radius of the Spherical Experimental Region to Vary with the Number of Factors (반응표면실험을 위한 3-수준 구형(球形) 실험설계: 구형 실험지역의 반경이 요인 수에 따라 변화하도록 구축된 설계)

  • 이우선;임성수
    • Journal of Korean Society for Quality Management
    • /
    • v.29 no.1
    • /
    • pp.24-40
    • /
    • 2001
  • Response surface designs can be classified, according to the shape of the experimental region, into spherical designs and cuboidal designs. Among the central composite design(CCD)s and the Box-Behnken design(BBD)s that are popular in practice, when the number of factors is k, spherical designs are tile CCDs with the axial value being $\sqrt{\textit{k}}$ and the BBDs, and cuboidal designs are the CCDs with the axial value being 1. With the CCDs having $\sqrt{\textit{k}}$ as the axial value, the radius of the experimental region varies with number of factors, but these designs are the 5-level designs. With the BBDs that are 3-level designs, the radius of the experimental region does not vary with the number of factors. In this article, we propose tile 3-level spherical designs which are constructed so that tile radius of the experimental region varies with the number of factors.

  • PDF

Multi-Optimal Designs for Second-Order Response Surface Models

  • Park, You-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.195-208
    • /
    • 2009
  • A conventional single design optimality criterion has been used to select an efficient experimental design. But, since an experimental design is constructed with respect to an optimality criterion pre specified by investigators, an experimental design obtained from one optimality criterion which is superior to other designs may perform poorly when the design is evaluated by another optimality criterion. In other words, none of these is entirely satisfactory and even there is no guarantee that a design which is constructed from using a certain design optimality criterion is also optimal to the other design optimality criteria. Thus, it is necessary to develop certain special types of experimental designs that satisfy multiple design optimality criteria simultaneously because these multi-optimal designs (MODs) reflect the needs of the experimenters more adequately. In this article, we present a heuristic approach to construct second-order response surface designs which are more flexible and potentially very useful than the designs generated from a single design optimality criterion in many real experimental situations when several competing design optimality criteria are of interest. In this paper, over cuboidal design region for $3\;{\leq}\;k\;{\leq}\;5$ variables, we construct multi-optimal designs (MODs) that might moderately satisfy two famous alphabetic design optimality criteria, G- and IV-optimality criteria using a GA which considers a certain amount of randomness. The minimum, average and maximum scaled prediction variances for the generated response surface designs are provided. Based on the average and maximum scaled prediction variances for k = 3, 4 and 5 design variables, the MODs from a genetic algorithm (GA) have better statistical property than does the theoretically optimal designs and the MODs are more flexible and useful than single-criterion optimal designs.

Coupled Line Cameras as a New Geometric Tool for Quadrilateral Reconstruction (사각형 복원을 위한 새로운 기하학적 도구로서의 선분 카메라 쌍)

  • Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • We review recent research results on coupled line cameras (CLC) as a new geometric tool to reconstruct a scene quadrilateral from image quadrilaterals. Coupled line cameras were first developed as a camera calibration tool based on geometric insight on the perspective projection of a scene rectangle to an image plane. Since CLC comprehensively describes the relevant projective structure in a single image with a set of simple algebraic equations, it is also useful as a geometric reconstruction tool, which is an important topic in 3D computer vision. In this paper we first introduce fundamentals of CLC with reals examples. Then, we cover the related works to optimize the initial solution, to extend for the general quadrilaterals, and to apply for cuboidal reconstruction.