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A Measure for Evaluating the Effect of Blocking in
Response Surface Designs Using Cuboidal Regions

Sang-Hyun Park : Dae-Heung Jang
Division of Mathematical Sciences, Pukyong National University

Abstract

The fitting of a response surface model and the subsequent exploration of the
response surface are usually based on the assumption that the experimental runs
are carried out under homogeneous conditions. This, however, may be quite often
difficult to achieve in many experiments. To control such an extraneous source of
variation, the response surface design should be arranged in several blocks within
which homogeneity of conditions can be maintained. In this case, when fitting a
response surface model, the least squares estimates of the model’s parameters and
the prediction variance will generally depend on how the response surface design
is blocked. That is, the choice of .a blocking arrangement for a response surface
design can have a considerable effect on estimating the mean response and on the
size of the prediction variance. In this paper, we propose a measure for evaluating
the effect of blocking of response surface designs using cuboidal regions.
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1. Introduction

The conditions under which experimental trials are performed in a response
surface design may not, in general, be homogeneous. In this case, blocking may
be often carried out within-block homogeneity. In the statistical literature on
response surface methodology, whenever a block des.ign is used, the block effect is
often considered to be fixed - that is, represented by a constant parameter in the
assumed model. This effect can affect the estimation of the mean response and
prediction variance over a certain region of interest. In particular, the least squares
estimates of the coefficients associated with the input variables in the fitted model
generally depend on the manner in which the design is divided into blocks.
Furthermore, the design is frequently chosen so that it blocks orthogonally. In this
special case, the least squares estimates and prediction variance are invariant to
the block effect, and hence the standard techniques of response surface
methodology can be applied as if the block effect did not exist. The conditions for
a response surface design to block orthogonally were given by Box and
Hunter(1957) for a second-order model and by Khuri(1992) for the general case of

a model of order d(=1).

In many experimental situations, a response surface design may not block
orthogonally. Dey and Das(1970) introduced the concept of non-orthogonal blocking
for the special case of second order models, and Adhikary and Panda(1990)
presented a sequential method for constructing second-order rotatable designs in
non-orthogonal blocks. More recently, Khuri(1994) demonstrated the effects of the
blocks on estimating the mean response, on the prediction variance and on the
optimum response when block effects are fixed.

There are, however, experimental situations in which it is more appropriate to
consider the block effect as random. It is important to properly identify the nature
of the block effect since the type of analysis to be used depends on whether the
block effect is fixed or random. The presence of a random block effect, in addition
to the usual fixed effects, in a response surface model results in a so-called
mixed model. The use of such a model in a response surface environment was
first considered by Khuri(1992), and Khuri(1996) extended his work by the addition
of interaction terms between the fixed polynomial effects and the random block
effects.

Giovannitti-Jensen and Myers(1989) developed the notion of variance dispersion
graphs(VDG) as a variance-based graphical technique for displaying a given
standard design’s performance for a specific model on spheres of varying radii
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inside a region of interest. In the presence of a fixed block effect, Park and
Jang(1999a) proposed measures for evaluating the effect of blocking in response
surface designs in terms of prediction variance. And Park and Jang(1997) proposed
a measure and a graphical method for evaluating the effect of blocking in
response surface designs with random block effects. This article extended the
work of Park and Jang(1999a). Park and Jang(1999b) proposed another graphical
method for evaluating the effect of blocking in response surface designs. All of
the discussions and illustrations in the preceding papers deal with prediction
variance for spherical regions. In this case it is natural to observe values of
prediction variance(apart from random error variance) averaging over the volumes
or surfaces of spheres. However, it is not natural to deal with the volumes or
surfaces of spheres when the natural region of interest is a cube(See Myers and
Montgomery (1995, p.382).). Also, spheres nested inside the design cube can be
used as the media for the VDG(See Myers et al.(1992).). However, cubes nested
inside the design cube can be more natural. Rozum and Myers(1991) extended the
work of Giovannitti-Jensen and Myers(1989) from spherical to cuboidal regions.

In this paper, using the ideas proposed by Khuri(1992, 1994) and Rozum and
Myers(1991), we propose a measure for evaluating the effect of blocking in
response surface designs using cuboidal regions in terms of prediction variance.
This measure can be used as a measure to investigate how blocking influences
the prediction variance throughout the entire experimental region and to compare
the effect of blocking in the cases of the orthogonal and non-orthogonal block
designs, respectively.

2. Effect of Blocking on the Prediction Variance

2.1 Case of a fixed block effect
Let us consider a response surface model of order d(=1) in % input variables,

%1, %2, ", % The mean response, 7(x), at a point x=(x;,%3,**,%;)" inside a

region of interest R is given by
nx)=By+ x5 B 1)

where the elements of the vector 8=(f;,8:,*,8,)" and By, are unknown

constant parameters and xz’ is a vector of order 1Xp whose elements are model
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terms except the intercept. For a first-order model x; = (x1,%9,+,x;) and

B=(B1,Bz,-,By’, and for a second-order model x5 = (%1, %z, ", %s, X2, X5, ",
2 2 2 —

xk’xlyst ."-xk’xley "',xlxk, et xk—‘lxk) and .5_ (ﬁls ﬂZ’”.a.Bkv Blly BZZ:"‘;Bkk!

Bz Bk B -1 -
Let us assume that the experimental units used are not homogeneous, but that
they can be divided into b blocks, where the units within a block are somewhat

homogeneous. Let #; denote the size of the jth block(j=1,2,+--,6) such that

n= n;. The response vector Yy, which consists of the #» observations, can
=

then be represented by the model

y=p8 1, tXB+Zo+e (2)

where 1, is a vector of ones of order #x1, X is an #Xp model matrix
except 1,, the elements of the vector 8=(AB,, Bs,**",B,)" and B, are unknown
constant parameters, 8= /(8, 8s,*+,8;)" is a fixed factor, where &, denotes the
effect of the sth block, Z is a block-diagonal matrix of form Z= diag( 1 -

1l,,.,1,), and £ is an nX1 vector of random errors which is assumed to

have a zero mean and a variance~covariance matrix OEI,,, where I, is the

identity matrix of order #X#. Since 1,=Z 1,, model (2) can be written as
y=Wi+ ¢ (3)

where W=[X:Z], 8=(8,7), and =8, 1,+6. If the block effects are

constrained to sum to zero, that is, ﬁl 0;=0, then By can be expressed as
f=

By= '15 Z:lsz % 1y

where r; is the jth element of (j=1,2,---,8). Then, the least-squares
estimator of @ is given by 8=(W'W) W'y and the variance-covariance

matrix of _/Q is
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Var( 8)=(W'W) "'t (4)
And, the predicted value of the mean response in model (1) is given by

W x)= B+ x5 B (5)
where ?0=% 1,"z. Formula (5) can be rewritten as
7(x)=x,"8 6)

where x, =[ 13':% 1,’]. The prediction variance of 7( x) can therefore be
written as
Var[ 3(x)]= 2, (WW) " x40%. )
Khuri(1994) demonstrated the following two results.

Result 1. Under orthogonal blocking, the prediction variance in formula (7) takes
the form

Varl (01 =Varl ()4 4 By = |7 ®

=nj

where Varl 7,( x)] denotes the prediction variance when the block effects are

zero, that is,
Varl 90( )= x,/(U'U) ' x,0% C)
where x,"=[1: x4’] and U=[ 1,:X].

Result 2. Under non-orthogonal blocking, the prediction variance in formula (7)
takes the form



64 =293 A A278 Al1% 199949 3¢

Var[ 9( 2)1= Var[ 5,( )]+ x4 Q x40° (10)

where @ is the matrix of order (p+ &) x (p+b) of the form Q=(W W) !
MIM (WW) "M "M (W W) ™!, where W=[X:Z], and M’ is a matrix of
order (b—1)x(p+b) of the form M =[0:L], where 0 is a zero matrix of
order (b—1)xp and L=[1,_;: —I;-;] is of order (b—1)% b.

From result 1, we can conclude that when the design blocks orthogonally, the
prediction variance at a point x inside the experimental region exceeds

Var| ?70( x)] by a constant amount that depends only on the sizes and number

of the blocks. That is, since the second term on the right-hand side of formula
(8) is nonnegative, we can find that blocking causes an increase in the prediction
variance when the design blocks orthogonally. Result 2 implies that the amount of

increase in the prediction variance, x5 @ lC,gOi, is not necessarily constant at all

points in the experimental region and that Var[ 7( x)]=Var[ 7,( x)] since @

1s positive semidefinite.

2.2 Case of a random block effect
Let us rewrite model (1) as

nx)=x, 8 (11)

where x,”=[1: x4"] is denoted in formula (9) and 8*=[8;: 8’1 is the vector
of unknown constant parameters. Suppose that the experimental runs used to fit
model (2) are not homogeneous due to the presence of an extraneous source of
variation, denoted by §, whose levels represent a random sample size b from a

much larger population. But they can be arranged in & blocks, where the runs
within a block are somewhat homogeneous. Let us represent model (2) as

yv=URBR+2Z6+¢ (12)

where U=[ 1,:X] denoted in formula (9) is an #X(p+1) model matrix and
0, Z and & are defined in model (2). This case deals with situations in which

the block effect in model (12) is random so that & is distributed as (Q, OZJb)
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independently of &. Model (12) is therefore a mixed model, since B* is a fixed

parameter vector. The mean response and the variance-covariance matrix of ¥

are respectively E(v)=U 8" and
=, + 77 = A (13)

where A= diag(A,, Ay,--,A;), where A;=I,+¢,, (j=1,2,-,b), where

Ju, is an #;Xn; matrix of ones and
b= o . (14)

In general, ¢ is unknown and should therefore be estimated by finding suitable
estimates of the variance components, 025 and 026 However, since our concerns is
merely in the performance of an experimental design, we consider a fixed ratio ¢£.
Khuri(1992) demonstrated that if the ratio ¢ is known, then the BLUE of £ is
the generalized least squares estimator E, given by E,Z(U A7) TMUA Ty

and the variance-covariance matrix of E is
Var( By)=(U A ~'0) "', (15)
And the predicted value of the mean response in model (11) is given by
7 0= 2. By (16)
The prediction variance of 72,( x) can therefore be written as
Varl 7 £)]1= xz,/ (UAT'U) 7! x,6. 17

It is meaningful to compare the prediction variances of a blocked design and an

unblocked design when there are block effects, that is, 02,g>0. Though there are

block effects, the ordinary least-squares estimator E, of £ obtained by ignoring
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the block effects is used as E=(U 'U) "'’y and the variance-covariance

matrix of E is
Var( B)=(U'U)'UAU(U' D) ', (18)
And the predicted value of the mean response in model (11) is given by
(2= x. B,
The prediction variance of 7;:,( x) can therefore be written as
Varl 70 0)1= x,/(UU)'UAUU'U) ™} z,0%. (19)

Note that in a standard response surface model with no random effects,
Bi= B= 8= (U'U)"'U v, Var( B)=Var( B) = Var( 8)=(U'U) "'&,

and hence Var[ 7 x)1= Varl 7 2)1= Varl 7 (x)].

3. A Measure for Evaluating the Effect of Blocking in
Response Surface Designs Using Cuboidal Regions

The choice of a blocking arrangement for a response surface design can have a
considerable effect on estimating the mean response and on the size of the
prediction variance. These are all shown to be affected by the sizes of the blocks
and the allocation of experimental runs to the blocks. Therefore, in order to
examine the variation in the prediction variance after blocking, it would be
important to choose a blocking arrangement in the same experimental designs.
Khuri(1994) demonstrated the effects of the blocks on estimating the mean
response, on the prediction variance and on the optimum of the response surface
model in the presence of a fixed block effect. Using his idea, in the presence of a
fixed block effect, Park and Jang(1999a) proposed measures for evaluating the
effect of blocking in response surface designs in terms of prediction variance.
Also, as the extension of their work, Park and Jang(1997) proposed a measure and
a graphical method for evaluating the effect of blocking in response surface
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designs with random block effects.
All of the discussions and illustrations in the preceding papers deal with
prediction variance for spherical regions of interest. In this case it is natural to

observe values of Var[7(x)]/o> averaging over the volumes or surfaces of

spheres. However, it is not natural to deal with the volumes or surfaces of
spheres when the natural region of interest is a cube(See Myers and
Montgomery (1995, p. 382).). Also, spheres nested inside the design cube can be

used as the media for the VDG(See Myers et al.(1992).). However, cubes nested
inside the design cube can be more natural. Rozum and Myerst199D extended the
work of Giovannitti-Jensen and Myers(1989) from spherical to cuboidal regions.

Both are useful tools for comparing competing designs or blocking arrangements.

Thus, in order to investigate the variation in prediction variance caused by
blocking, we introduce a measure that quantifies the effect of blocking in response
surface designs using a cuboidal region in the cases of a fixed effect and a
random effect, respectively.

3.1 Case of a fixed block effect
Since 025 is generally unknown and bevond the control of the experimenter, it
is important to note that, apart from the constant ai, the prediction variance

depends only on the design that determines the form of the assumed model and

the specific location of x. From formula (10), we define a measure as follows :
BEVAN=K fc 20’ Q x0dx (20)

which we call the blocking effect variance(BEV) in the presence of a fixed block
effect. Here, the radius # is defined as the distance from the center of the

hypercube to its face, C is the hypercube with a radius 7 defined by C= {x:
—r<x; <7 (=1,2,,k} and K '= fcdic implies integration over the volume
of the hypercube with a radius 7. Hence, the blocking effect variance means the
average of x, @ x4 over the volume of the hypercube with a radius 7. By

applying a property of the trace, the blocking effect variance, BE Vf( ¥), is

written as
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BEV,(n= K | [ x,'Q x,ldx
= tr[KfCicg ch'Qdic] (21)
= tr[SQ]

where S=K fc Xy X¢ dx is a matrix of the cuboidal region moments.

A cuboidal region moment of order ¢ is defined as follows :

O =K fc X123 g d x (22)

where K l'= fc dx=(2 r)k is the cuboidal volume of a radius# and

a1, 42, ***,qr are nonnegative integers such that ilq,-=q£2d. Since C is a
&

symmetric region, the cuboidal region moment 0 ,,., is 0 whenever any g; is

odd. The cuboidal region moments that are used in the development of the
blocking effect variance for the first-order and second-order model cases are the
second and fourth-order cuboidal region moments given by

0y = Kfcx?dic=—§2—,
4
0y= Kfcx‘}dx=%

) (23)

4
— 2,2 _r
Oy~ KLJC,’deLC— 9 -

By applying formulas (22) and (23) to formula (21), we obtain, in the case of a
first-order model,

] b " i
BV 55 R

and, in the case of a second-order model.
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_ 1 & bffﬁf‘ﬁz ”ﬁ i
BEV/(n)= b i=p+1j=p+lc + 3 (z= ¢+ b 541 2 +1C)

4 L i 1 ii g ﬁ; i
+7{ 5 & C T [i=§+1c e ;‘=_;1€ ]]
iF

where c¢? is the (i,/)th element of Q (i,7=1,2,--,p+b). This quantity,

BEV,(7), is the average of the amount of increase in the prediction variance

(24)

over the volume of a cube with a radius # due to blocking. Therefore, this
quantity can be used as a measure for evaluating the effect of blocking on the
prediction variance in response surface designs using cuboidal regions in the case
of a fixed block effect. Also, this quantity can be used to measure the extent to
which blocking in a given design is away from orthogonal blocking.

3.2 Case of a random block effect
From formulas (17) and (19), let us consider

VB(LC):VCZ—W{OZMl= x, (UATD) ' x, (25)

and

VU(z)=MOZL@l= %, (UU)WUAXUU) L x,. (26)

Thus, from formulas (25) and (26), we define measures as follows :

BEVE(D) = K fc Vi x)dx
e 27)

- = KfC X, Qp x,dx

which we call the blocking effect variance in the presence of a random block
effect and

BEV!(D= K| Vi D)dx
¢ (28)

= K|, x,/Qux.dx
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which we call the unblocking effect variance in the presence of a random block
clfect. Here, @y is the matrix of order (p+1) X (p+1) of the form Q=

('A 'U) ' Qy is the matrix of order (p+1)X(p+1) of the form Qy=
() '"UAU(U'U) ", C and K™! are defined in formula (20). Similarly,

by applving a property of the trace, formulas(27) and (28) are written as
BEVE(») = Kfctr{ %, Qp x,]dx
= v[K [ 22 2./ Qpdx (29)
= tr[S"Qpl
and
BEVY()= K[ td 2, Qux)dx

= tr[KfCicu ;cu'QUdgz] (30)
= tr[ ST Q]

where S*'=K fc X, X, dx is a matrix of the cuboidal region moments. Using

the cuboidal region moments in formulas (22) and (23) for reexpression of
formulas (29) and (30), we obtain, in the case of a first-order model,

BEV(n=d"+ é >, d"”

and

Uy o T i
BEV(n=e" + 3 gle

and, in the case of a second-order model,

BEVE(r); d%+ L;— ( Zldﬁ-'_z iﬁﬂdﬁ)

af 1 i, 1 ii 25 i
+r{ 5 iﬁﬂd *3 (z‘=§+1d + iﬁJrl ;‘=_%+_1d ]}
177

(3D
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ez‘i_i_l['g ez‘i_l_.ﬁ ﬁ eij)}
i=Fr1 9 | =%+ iy =By =N]
i#j

where d” is the (7, )th element of Qz(7,7=0,1,2,~,p) and e” is the (i, )th
element of Qu(i,7=0,1,2,+,9). The quantity, BEVZ(#), is the average of the
prediction variances over the volume of a hypercube with a radius 7 due to
blocking when there are block effects and the quantity, BEVY(#), is the average
of the prediction variances obtained by ignoring the block effects over the volume

of a hypercube with a radius 7 when there are block effects. Hence, BEVZ(#)

and BEVY(») can be used as a measure for evaluating the effect of blocking on

the prediction variance in response surface designs using cuboidal regions in the
case of a random block effect.

Thus, through these measures, BEVA7), BEVZ(#)and BEVY(%»), we can
examine more clearly the variation in the prediction variance resulting from
blocking in the cases of a fixed and random effect, throughout the entire
experimental regions of interest, when these regions are cuboidal, and compare the
block effects in the cases of the orthogonal and non-orthogonal block designs,
respectively. Therefore, given the same number of experimental runs, we can
choose between competing blocking arrangements one which is more effective in
terms of prediction variance when the region of interest is cuboidal.

4. A Numerical Example

Let us considér the example used in Khuri(1994). This example is based on an
experiment described by Box and Draper (1987, p.360), concerning a small reactor
study. The experiment was performed sequentially in four blocks, each consisting
of six runs. Three input variables were considered (ie. F: flow rate in liters per
hour, C: concentration of catalyst, T: temperature). <Table I> shows the original
block design described by Box and Draper(1987). A second-order model in x; x
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and x3 was fitted. Here, x; x, and x3 denote the coded values of F, C and T,

respectively. The original block design is of the central composite form with four
center points and a replicated axial portion. This particular design is rotatable and
blocks orthogonally, as can be verified by applying Box and Hunter’s(1957)
conditions. Let us consider other blocking arrangements of the same 24
experimental runs in <Table I>. These blocking arrangements are described in
<Table II>, which is modified from <Table II> in Khuri(1994). All blocking
arrangements are scaled so that the design perimeter is restricted to being inside
a unit cube. For each blocking arrangement, computations of the blocking effect
variances are made. The results are given in <Table HI>. It should be noted that
the original and blocking arrangement 6 is orthogonal, but the other blocking
arrangements are not. It also should be noted that blocking arrangements 1-~5
except blocking arrangement 6 have the same number of blocks and block sizes
as in the original block design, but the allocation of experimental runs to the
blocks is not the same.

< Table | > The original block design

Block Exp.run X1 X5 X3
1 -1 -1 1
2 1 -1 -1
1 3 -1 1 -1
4 1 1 1
5 0 0 0
6 0 0 0
7 -1 -1 -1
8 1 -1 1
9 9 -1 1 1
10 1 1 -1
11 0 0 0
12 0 0 0
13 V2 0 0
14 VI 0 0
2 15 0 —V2 0
16 0 V2 0
17 0 0 —V2
18 0 0 V2
19 V39 0 0
20 V2 0 0
4 21 0 —v2 0
22 0 V9 0
23 0 0 -2
24 0 0 V2
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< Table Il > Division of the experimental runs described in Table |
for the blocking arrangements

Blocking Block 1 Block 2 Block 3 Block 4
arrangement

. 1, 2 5 3, 4, 7 13, 14, 15 19, 20, 21
6, 11, 12 8 9, 10 16, 17, 18 22, 23, 24
) 3 4, 5 9, 10, 11 1, 215 7, 8 21
6, 13, 14 12, 19, 20 16, 17, 18 22, 23, 24
5 2, 3 4 8 9, 10 1, 14, 15 7, 20, 21
5 6,13 11, 12, 19 16, 17, 18 22, 23, 24
A 1, 2, 3 7.8 9 6, 14, 15 12, 20, 21
4, 5,13 10, 11, 19 16, 17, 18 2, 23, %4
. 3 4, 5 7, 8 9 1, 215 19, 20, 21
6, 13, 14 10, 11, 12 16, 17, 18 22, 23, 24

1, 2,3 4 13 14 15 19, 20, 21

6 5 6 7, 8 16, 17, 18 22, 23, 24

9, 10, 11, 12

< Table 1ll > The blocking effect variances for blocking arrangements
with a fixed effect

Blocking arrangement
original® 1 2 3 4 5 6
BEV 0.0000 0.1398 0.1061 0.0281 0.0157 0.0426 0.0046

* Orthogonal blocking arrangements

4.1 Case of a fixed block effect

From <Table II>, we can find that since the original design blocks
orthogonally and has the same block sizes, we can find that the values of the
BEV in equation (24) are equal to zero. Hence, for this blocking arrangement,
blocking causes no increase in the prediction variance. But, we see that since
blocking arrangement 6 is an orthogonal blocked design which has the different
block sizes, the value of BEV is not zero. Also, in the cases of the
non-orthogonal blocking arrangements 1~5 which have the same number of
blocks and block sizes, we can clearly see that blocking arrangement 4 minimizes
the average increase in the prediction variance caused by blocking. These results
are the same as those of Park and Jang(1999a) obtained in terms of spherical
regions.
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4.2 Case of a random block effect

We shall consider the same example and blocking arrangements used in the
previous case of a fixed block effect. In this case of a random block effect, it
must be considered the value of the ratio ¢= 025/ 02€ In general, the ratio ¢ is
unknown and should therefore be estimated from the data. However, since our
concerns is merely in the performance of an experimental design, according to the
various values of ¢ with an appropriate size ({=0~1.0), computations of the
blocking effect variances and the unblocking effect variances for several blocking
arrangement in Table II are made, respectively. As the results, we have tried to
depict the graphs of the blocking effect variances and the unblocking effect
variances for several blocking arrangements against varying ¢ From these
Figures, we find that on the whole, the unblocking effect variances and the
blocking effect variances of the blocking arrangements increase as ¢ increases
and the unblocking effect variances for the blocking arrangements are always
greéter than or equal to the blocking effect variances. That is,
Varl. 7.( x)1= Var[ 7, x)] against varying ¢ in the presence of a random block
effect. <Figure 1> and 4 show the graphs of the blocking effect variances and the
unblocking effect variances for orthogonal blocked designs with a random effect
against varying ¢. From <Figure 1>, we can find that since the original design
blocks orthogonally and has the same block sizes, the unblocking effect variances
and the blocking effect variances are same for against varying ¢ But from
<Figure 4>, because blocking arrangement 6 has the different block sizes, though
the design blocks orthogonally, the unblocking effect variances and the blocking
effect variances always are not same for against varying ¢ <Figure 2> and 3
show the graphs of blocking arrangements such that the average change in the
prediction variance due to blocking is very high and low respectively, among the
non-orthogonal blocking arrangements 1 ~5 which have the same number of
blocks and block sizes. Comparing the non-orthogonal blocking arrangements 1 ~
5, from <Figure 3>, we can see that for any values of &, blocking arrangement 4
among blocking arrangements 1 ~5 is most effective in terms of prediction
variance. <Figure 5> shows differences between the unblocking effect variances
and the blocking effect variances for several blocking arrangements with a random
effect against various & From <Figure 5>, we can see more clearly the change
of the block effects for several blocking arrangements. <Figure 6> shows
comparison of the blocking effect variances for several blocking arrangements with
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a random effect against various ¢ From <Figure 6>, we can see that for any
values of ¢, the original block design is most effective among several blocking
arrangements. These results are the same results as those of Park and Jang(1997)
obtained in terms of spherical regions.

——— UNBLOCKING
--=--—- BLOCKING

9

< Figure 1 > Blocking effect variances for the original block design
with a random effect against varying &

——— UNBLOCKING
==-=-- BLOCKING

2.0 T T T T T — T T
8.0 0.1 3.2 0.2 B.4 0.5 .6 .7 BB 0.9 1.0

Zota

< Figure 2 > Blocking effect variances for blocking arrangement 2
with a random effect against varying ¢
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— UNBLOCKING
-=----- BLOCKING

BEV(r)
[
@
I

1

e.0 ©.1 0.2 0.2 B84 BE ©.6 0.7 2.8 2.9 1.0
Zota

< Figure 3 > Blocking effect variances for blocking arrangement 4
with a random effect against varying ¢

1.0
Q.9
— UNBLOCK ING
....... BLOCKING
8

2.0 ©.1 0.2 0.3 0.4 B.5 R.6 0.|7 p.8 0.|9 1.0

< Figure 4 > Blocking effect variances for blocking arrangement 6
with a random effect against varying ¢
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5. Conclusions

In many RSM situations the study is too large to allow all runs to be made
under homogeneous conditions. As a result, it is important and interesting to
consider the experimental designs that facilitate blocking, that is, the inclusion of
block effects. Also, the choice of a blocking arrangement for a response surface
design can have a considerable effect on estimating the mean response and on the
size of the prediction variance. Therefore, care should be exercised in the selection
of blocks.

In this paper, a measure, the BEV has been proposed that allows us to evaluate
the block effects in response surface designs using cuboidal regions. Computing
the blocking effect variances and the unblocking effect variances in the presence
of a fixed and random effect, we can evaluate and compare the effect of blocking
on the prediction variance in the cases of the orthogonal and non-orthogonal
blocked designs, respectively, when the region of interest is cuboidal. In the case
of a fixed effect, the average increase in prediction variance of any blocked design
resulting from blocking appears to be always greater than or equal to zero. But in
the case of a random effect, the average of the prediction variances of an
unblocked design obtained by ignoring the block effects appears to be always
higher than that of the corresponding blocked design. Therefore, through this
measure, we ascertain that which block design minimizes the average change in
the prediction variance caused by blocking, and this measure allows us to compare
and evaluate any blocked designs with a fixed and random effect in terms of
prediction variance when the region of interest is cuboidal.

Considering the extension of this paper in addition to the prediction variance, it
is also interesting to depict the design’s performance over the region of interest
on bias to model misspecification.
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