• Title/Summary/Keyword: cube

Search Result 1,091, Processing Time 0.027 seconds

Fault Diameter and Fault Tolerance of Gray Cube (그레이 큐브의 고장 지름(Fault Diameter)과 고장 허용도(Fault Tolerance))

  • Lee, Hyeong-Ok;Joo, Nak-Keun;Lim, Hyeong-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.1930-1939
    • /
    • 1997
  • In this paper, we analyze the fault diameter and fault tolerance of Gray cube proposed recently in [12]. fault diameter of an interconnection network is one of the important network measures concerning the distance between nodes when some nodes fail. It is showed that fault diameter of n-dimensional Gray cube having $2^n$ nodes is [(n+1)/2]+2, ($n{\ge}3$). It means the increment of the longest distance between nodes under node-failure is only constant factor. Comparing the result with the fault diameter of well-known hypercube, the longest routing distance of a message in a Gray cube under node-failure is about the half of that hypercube.

  • PDF

The Microstructures and Hot Extrudability of Semi-solid AM100A Magnesium Alloy Fabricated by Cooling Plate (냉각판으로 제조한 반응고 AM100A 마그네슘 합금의 미세조직 및 열간 압출성)

  • Kim, Dae-Hwan;Sung, Young-Rock;Shim, Sung-Yong;Lee, Sang-Yong;Kim, Kwang-Sam;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.29 no.3
    • /
    • pp.144-149
    • /
    • 2009
  • In this study, we investigated optimum condition of cooling plate method to obtain semi-solid AM100A Mg alloy with fine and globular morphology. AM100A Mg alloy were hot extruded at $380^{\circ}C$ extrusion temperature under extrusion ratio of 25 : 1 and ram speed of 2.4 mm/sec. Vickers hardness test, optical microscopy, scanning electron microscopy, and image analyzer were performed to identify the optimum conditions of cooling plate method. Optimum conditions of cooling plate method to fabricate semi-solid AM100A Mg alloy with fine and globular microstructures were achieved at a pouring temperature of $602^{\circ}C$ and the angle of cooling plate of 60 degree.

Trajectory analysis of a CubeSat mission for the inspection of an orbiting vehicle

  • Corpino, Sabrina;Stesina, Fabrizio;Calvi, Daniele;Guerra, Luca
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.271-290
    • /
    • 2020
  • The paper describes the analysis of deployment strategies and trajectories design suitable for executing the inspection of an operative spacecraft in orbit through re-usable CubeSats. Similar missions have been though indeed, and one mission recently flew from the International Space Station. However, it is important to underline that the inspection of an operative spacecraft in orbit features some peculiar characteristics which have not been demonstrated by any mission flown to date. The most critical aspects of the CubeSat inspection mission stem from safety issues and technology availability in the following areas: trajectory design and motion control of the inspector relative to the target, communications architecture, deployment and retrieval of the inspector, and observation needs. The objectives of the present study are 1) the identification of requirements applicable to the deployment of a nanosatellite from the mother-craft, which is also the subject of the inspection, and 2) the identification of solutions for the trajectories to be flown along the mission phases. The mission for the in-situ observation of Space Rider is proposed as reference case, but the conclusions are applicable to other targets such as the ISS, and they might also be useful for missions targeted at debris inspection.

A Convergence Study on Chest Compression Effects of CPR(Cardio-pulmonary resuscitation)Cube in the Layperson (일반인을 대상으로 한 CPR 큐브의 가슴압박 효과의 융합적 연구)

  • Yang, Hyun-Mo;Kim, Jin-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.221-225
    • /
    • 2019
  • The purpose of this study is to provide the general public with basic data to facilitate the application of Cardio-Pulmonary Resuscitation(CPR). There were two groups using CPR mannequin and CPR cube, and participants were given three days of CPR training and two weeks later evaluated for chest compression. Participants recorded chest compression depth, rate of chest compression, accuracy of chest compression, insufficient recoil and incomplete place. There was a statistically significant difference in insufficient recoil and incomplete place in the study. The use of CPR cube to expand CPR education is also believed to be useful in terms of confidence and quality in implementing CPR.

Performance Analysis of M-ary Optical Communication over Log-Normal Fading Channels for CubeSat Platforms

  • Lim, Hyung-Chul;Yu, Sung-Yeol;Sung, Ki-Pyoung;Park, Jong Uk;Choi, Chul-Sung;Choi, Mansoo
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.219-228
    • /
    • 2020
  • A CubeSat platform has become a popular choice due to inexpensive commercial off-the-shelf (COTS) components and low launch cost. However, it requires more power-efficient and higher-data rate downlink capability for space applications related to remote sensing. In addition, the platform is limited by the size, weight and power (SWaP) constraints as well as the regulatory issue of licensing the radio frequency (RF) spectrum. The requirements and limitations have put optical communications on promising alternatives to RF communications for a CubeSat platform, owing to the power efficiency and high data rate as well as the license free spectrum. In this study, we analyzed the performance of optical downlink communications compatible with CubeSat platforms in terms of data rate, bit error rate (BER) and outage probability. Mathematical models of BER and outage probability were derived based on not only the log-normal model of atmospheric turbulence but also a transmitter with a finite extinction ratio. Given the fixed slot width, the optimal guard time and modulation orders were chosen to achieve the target data rate. And the two performance metrics, BER and outage data rate, were analyzed and discussed with respect to beam divergence angle, scintillation index and zenith angle.

A Hyper Cube Spanning Tree Protocol for Smart Grid (스마트그리드를 위한 하이퍼큐브 스패닝 트리 프로토콜)

  • Piao, Wenjie;Joe, In-Whee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.572-575
    • /
    • 2011
  • It is well known that spanning tree protocol (STP) is the most commonly used protocol in switching networks for smart grid. STP selectively blocks redundancy links of the network to prevent layer 2 loops in network, and it also has a functionality of backing up links. As with the other protocols, STP has been updated with the continuing development of the network. STP is a broad concept and it does not just refer in particular to defined STP protocol in IEEE 802.1D standards, it refers to updated spanning tree protocol based on STP. Because of uneven distribution of communication traffic in root bridge, STP cannot satisfy fast converge nce while the failure occurs near the root bridge or on the root bridge in tree topologies of STP. In this paper, we propose a novel method --- Hyper Cube Spanning Tree Protocol (HCSTP) to solve uneven distribution of communication traffic. Theoretically, hyper cube in our protocol increases throughput and improves the utilization of communication. The simulation results show that HCSTP can achieve comparative and considerably higher performance than other STP protocols in terms of reconnection.

A Comparative Study on Innovation Tools for the Development of Business Models by the Types of Convergence (컨버전스유형별 비즈니스모델 개발을 위한 혁신도구 비교 연구)

  • Yang, Dong-Heon;Byun, Jong-Bong;You, Yen-Yoo
    • Journal of Digital Convergence
    • /
    • v.10 no.6
    • /
    • pp.141-152
    • /
    • 2012
  • This study is a comparatively analyzes innovation tools for developing appropriate business models according to the types of convergence. Firstly, it examines previous studies on the type of convergence, business models, and innovation tools. Based on the understanding of each topic through literature search, it introduces Convergence-Business-Innovation Tools Cube (CBI Cube) model with the concept of developing innovative business models by applying innovation tools under the condition of convergence. In order to quantify (concretize) the concept, we have compared the relative priority of innovation tools for developing business models to find component factors of CBI Cube model through the survey of an expert group by adopting DelPhi method and AHP method. From the result of this study, we expect to be able to make an easier approach to the development of innovative products, services and market as it allo ws to develop business models of value innovation beyond just benchmarking or simple imitation of existing business models.

The reinterpretation and the visualization of the cube duplication problem solving in medieval Islam (중세 이슬람이 보인 입방배적문제 해결방법들의 재조명과 시각화)

  • Kim, Hyang Sook;Pak, Jin Suk;Lee, Eun Kyoung;Lee, Jae Don;Ha, Hyoung Soo
    • East Asian mathematical journal
    • /
    • v.30 no.2
    • /
    • pp.173-195
    • /
    • 2014
  • This study, utilizing several features about plane figures covered in the current secondary curriculum of mathematics and reviewing two solutions to cube duplication problem presented by Menaechmus, proving the solution by Nicomedes and visualizing solutions based on Apollonius' 'Conics' by medieval Islam geometricians such as Ab$\bar{u}$ Bakr al-Haraw$\bar{i}$, AbAb$\bar{u}$ J$\acute{a}$far al-Kh$\bar{a}$zin, Nas$\bar{i}$r al-D$\bar{i}$n al-T$\bar{u}s\bar{i}$, Y$\bar{u}$suf al-Mu'taman ibn H$\bar{u}$d, introduce to teachers and students in the field where the question of cube duplication problem comes from and which solving method has developed it and suggests new methods for visualization using dynamic geometry program as well so that the contents reviewed can be used in the filed. The solving methods to cube duplication problem in this paper are very creative and increase the practicality, efficiency and value of Mathematics, and provide students and teachers with the opportunities to reconfirm the importance and beauty of basic knowledge in the secondary geometry in the process of visualization of drawing figures using dynamic geometry program.

Efficient Computation of Data Cubes Using MapReduce (맵리듀스를 사용한 데이터 큐브의 효율적인 계산 기법)

  • Lee, Ki Yong;Park, Sojeong;Park, Eunju;Park, Jinkyung;Choi, Yeunjung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.11
    • /
    • pp.479-486
    • /
    • 2014
  • MapReduce is a programing model used for parallelly processing a large amount of data. To analyze a large amount data, the data cube is widely used, which is an operator that computes group-bys for all possible combinations of given dimension attributes. When the number of dimension attributes is n, the data cube computes $2^n$ group-bys. In this paper, we propose an efficient method for computing data cubes using MapReduce. The proposed method partitions $2^n$ group-bys into $_nC_{{\lceil}n/2{\rceil}}$ batches, and computes those batches in stages using ${\lceil}n/2{\rceil}$ MapReduce jobs. Compared to the existing methods, the proposed method significantly reduces the amount of intermediate data generated by mappers, so that the cost of sorting and transferring those intermediate data is reduced significantly. Consequently, the total processing time for computing a data cube is reduced. Through experiments, we show the efficiency of the proposed method over the existing methods.

Attitude Determination Algorithm Design and Performance Analysis for CNUSAIL-1 Cube Satellite (CNUSAIL-1 큐브위성의 자세결정 알고리듬 설계 및 성능분석)

  • Kim, Gyeonghun;Kim, Seungkeun;Suk, Jinyong;Kim, Jong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.609-618
    • /
    • 2015
  • This paper discusses the attitude determination of the CNUSAIL-1 cube-satellite. The primary mission of the CNUSAIL-1 is sail deployment and operation in low Earth orbit, and the secondary mission is to look into influence of the sail deployment on satellite attitude and orbit. The attitude determination strategy is proposed depending on three mission phases, and its performance and applicability are verified through numerical simulations. This study considers the following sensors: Sun sensors and a three-axis magnetometer as attitude reference sensors, and a three-axis MEMS gyroscope as an inertial attitude sensor. Because sensors used for cube satellites have relatively low performances and worse noise characteristics, an Extended Kalman filter (EKF) is applied to attitude determination. Additionally, it has the merits to deal with the Gaussian noises and to predict the attitude even with no measurements from reference attitude sensors, especially in the eclipse of the cube satellite. The performance of the EKF is compared to a deterministic attitude determination technique, QUEST(QUaternion ESTimation).