• Title/Summary/Keyword: crystallinity

Search Result 2,073, Processing Time 0.021 seconds

Spatial variation in quality of Ga2O3 single crystal grown by edge-defined film-fed growth method (EFG 방법으로 성장한 β-Ga2O3 단결정의 영역별 품질 분석)

  • Park, Su-Bin;Je, Tae-Wan;Jang, Hui-Yeon;Choi, Su-Min;Park, Mi-Seon;Jang, Yeon-Suk;Moon, Yoon-Gon;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • β-Gallium oxide (Ga2O3), an ultra-wide bandgap semiconductor, has attracted great attention due to its promising applications for high voltage power devices. The most stable phase among five different polytypes, β-Ga2O3 has the wider bandgap of 4.9 eV and higher breakdown electric field of 8 MV/cm. Furthermore, it can be grown from melt source, implying higher growth rate and lower fabrication cost than other wide bandgap semiconductors such as SiC, GaN and diamond for the power device applications. In this study, β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process. The growth direction and the principal surface were set to be the [010] direction and the (100) plane of the β-Ga2O3 crystal, respectively. The spectra measured by Raman an alysis could exhibit the crystal phase an d impurity dopin g in the β-Ga2O3 ingot, and the crystallinity quality and crystal direction were analyzed using high-resolution X-ray diffraction (HRXRD). The crystal quality and various properties of as-grown β-Ga2O3 ribbon was systematically analyzed in order to investigate the spatial variation in entire crystal grown by EFG method.

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications (고분자 전해질 막 연료전지 응용을 위한 고성능 과불소화계 전해질 막 개발 연구 동향)

  • Choi, Chanhee;Hwang, Seansoo;Kim, Kihyun
    • Membrane Journal
    • /
    • v.32 no.5
    • /
    • pp.292-303
    • /
    • 2022
  • An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System (미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구)

  • Kyoung-Ho Kim;Heesoo Lee;Yun-Ji Shin;Seong-Min Jeong;Si-Young Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.500-504
    • /
    • 2023
  • In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

MD Simulation of PLA-PEG Composites for Additive Manufacturing (적층 가공에서 적용 가능한 PLA-PEG 복합재료의 MD Simulation)

  • Songhee Ham;Youngjoon Jeon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-290
    • /
    • 2023
  • Poly-lactic acid (PLA) is the most promising polymer in additive manufacturing as an alternative to acrylonitrile butadiene styrene (ABS). Since it is produced from renewable resources such as corn starch and sugar beets, it is also biocompatible and biodegradable. However, PLA has a couple of issues that limit its use. First, it has a comparatively low glass transition temperature of around 60 ℃, such that it exhibits low thermal resistance. Second, PLA has low impact strength because it is brittle. Due to these problems, scientists have found methods to improve the crystallinity and ductility of PLA. Polyethylene glycol (PEG) is one of the most studied plasticizers for PLA to give it chain mobility. However, the blend of PLA and PEG becomes unstable, and phase separation occurs even at room temperature as PEG is self-crystallized. Thus, it is necessary to investigate the optimal mixing ratio of PLA-PEG at the molecular scale. In this study, molecular dynamics will be conducted with various ratios of L-type PLA (PLLA) or DL-type PLA-PEG (PDLA-PEG) systems by using BIOVIA Materials Studio.

Characterization of TMA-A zeolite incorporated by ZnO nanocrystals (ZnO 나노결정을 담지한 TMA-A 제올라이트의 특성분석)

  • Lee, Seok Ju;Lim, Chang Sung;Kim, Ik Jin
    • Analytical Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.58-63
    • /
    • 2008
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$ : 2.2 TEOS : 2.4 TMAOH : 0.3 NaOH : 200 $H_2O$. 0.3 g of TMA-A zeolite and 5 mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The incorporated nano-sized ZnO crystals and the crystallinity of TMA-A zeolite were evaluated by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The size of the incorporated nano-sized ZnO crystals was 3~5 nm, while the TMA-A zeolite was 60~100 nm. The bonding structure and absorption of the ZnO incorporated TMA-A zeolite were compared with the ZnO and TMA-A zeolite by the FT-IR analysis. Subsequentlly, the ZnO incorporated TMA-A zeolite showed the photoluminescent characteristics on the wavelengths of 330~260 nm and 260~230 nm by measurement of UV spectrophotometer.

Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical (바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발)

  • Seong-jun Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).

Effects of Substrate Temperature on Figure of Merit of Transparent Conducting GZO Thin Films (기판온도가 GZO 투명전도막의 재료평가지수에 미치는 영향 )

  • Hyun-Ho Shin;Yang-Hee Joung;Seong-Jun Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.797-802
    • /
    • 2023
  • We prepared GZO (Ga2O3 : 5 wt %, ZnO : 95 wt %) thin film on glass substrate according to the substrate temperature using the pulsed laser deposition method and investigated electrical and optical properties of the thin film. Through the XRD measurements, their were confirmed that all GZO thin films grew preferentially in c-axis and the GZO thin film deposited at 300℃ showed the best crystallinity with a FWHM of 0.38°. As the substrate temperature increased from 150 to 300℃, the resistivity of GZO thin film tend to decrease, while the average transmittance in the visible light region was not significantly affected. The figure of merit of the GZO thin film deposited at 300℃ was 2.05×104-1·cm-1, which was the best value, the resistivity and the average transmittance in the visible light region were 3.72 × 10-4 Ω·cm and 87.71 %, respectively. In this study, it was found that GZO thin film is very promising material for transparent conducting thin film.

Synthesis and characterization of Li3V2(PO4)3/C composite cathode materials using direct co-precipitation method (직접 공침법을 이용한 Li3V2(PO4)3/C 복합체 양극 활물질 합성 및 특성)

  • Jeong-Hwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.167-173
    • /
    • 2023
  • Li3V2(PO4)3 and Li3V2(PO4)3/C composite with single phase monoclinic structure for the cathode materials are successfully synthesized by direct co-precipitation method using N2H4·H2O as the reducing agent and alginic acid as the carbon source, and their electrochemical properties were compared. The particles with approximately 1~2 ㎛ size and the uniform spherical-like morphology of the narrow particle size distribution were obtained. In addition, the residual carbon can also improve the electrical conductivity. The Li3V2(PO4)3/C composite has improved initial specific discharge capacity and excellent cycle characteristics to maintain capacity stably than Li3V2(PO4)3. The results indicate that the reducing agent and carbon composite can affect the good crystallinity and electrochemical performance of the cathode materials.

Adsorption of Glycerol on Hydroxyapatite Enhanced Colloidal Stability in Phosphate Buffered Saline Solution (글리세롤 흡착으로 인산완충식염수에서 콜로이드 안정성이 향상된 수산화인회석 합성)

  • Jaun An;Hyebin Choi;Keunyoung Lee;Ki-Young Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.670-673
    • /
    • 2023
  • The biocompatibility of hydroxyapatite (HAP) has led to its application in various fields. To accomplish practical biological applications, such as drug/gene delivery, the colloidal stability of HAP in phosphate-buffered saline (PBS) is particularly important. In this study, we prepared a glycerol incorporated-HAP (Gly-HAP) by heating HAP in a glycerol environment at 200 ℃. To compare morphology and colloidal stability, HAP prepared at room temperature (RT-HAP) was thermally treated in water at 200 ℃ (H2O-HAP). The heat treatment of HAP in both water and glycerol solutions results in an increase in the crystallinity of HAPs. Due to the low solubility of HAP in glycerol and the adsorption of glycerol on the HAP surface, crystal growth is limited. However, the heat-treated HAP under water increased in size by approximately four times compared to the initial crystallites. Compared to RT-HAP and H2O-HAP, Gly-HAP shows improved colloidal stability in PBS, which originates from the adsorption of glycerol on the HAP surface that inhibits the agglomeration of individual HAP precipitates.

Development of novel oxyfluoride glasses and glass ceramics for photoluminescence material by a containerless processing (무용기 용융법을 활용한 형광소재용 결정화 유리 개발)

  • Hyerin Jo;Minsung Hwang;Youngjin Lee;Jaeyeop Chung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.181-186
    • /
    • 2023
  • In this study, novel Eu2O3-BaF2-La2O3-B2O3 oxyfluoride glasses and glass ceramics were developed by a containerless processing. Differential thermal analysis (DTA) analysis was performed to analyze the thermophysical properties of oxyfluoride glasses doped with Eu2O3, and photoluminescence (PL) characteristics were analyzed to evaluate the luminous efficiency depending on the degree of crystallinity. The glass transition temperature decreased with increasing BaF2 concentration since BaF2 acts as a network modifier in this glass system. In addition, thermal stability which can be estimated by the difference between the glass transition temperature and the onset temperature of the crystallization decreased with increasing BaF2 contents. The peak related to the BaF2 crystal was confirmed after the crystallization by X-ray Diffraction (XRD) analysis. Photoluminescence intensity increased after the crystallization which indicates that the Eu3+ ions are sited in BaF2 crystal. La 3d5/2 x-ray photoelectron spectroscopy (XPS) and F1s XPS spectra were analyzed to precisely understand the behavior of the fluorine ion in the glass structure. Fluorine tends to bond with the network modifying cations such as La3+ and Ba2+ ions and after the crystallization the La-F bonds decreased because F- ions used to form BaF2 crystals.