DOI QR코드

DOI QR Code

Spatial variation in quality of Ga2O3 single crystal grown by edge-defined film-fed growth method

EFG 방법으로 성장한 β-Ga2O3 단결정의 영역별 품질 분석

  • Park, Su-Bin (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Je, Tae-Wan (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jang, Hui-Yeon (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Choi, Su-Min (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Park, Mi-Seon (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Jang, Yeon-Suk (Department of Advanced Materials Engineering, Dong-Eui University) ;
  • Moon, Yoon-Gon (AXEL) ;
  • Kang, Jin-Ki (AXEL) ;
  • Lee, Won-Jae (Department of Advanced Materials Engineering, Dong-Eui University)
  • Received : 2022.07.20
  • Accepted : 2022.08.04
  • Published : 2022.08.31

Abstract

β-Gallium oxide (Ga2O3), an ultra-wide bandgap semiconductor, has attracted great attention due to its promising applications for high voltage power devices. The most stable phase among five different polytypes, β-Ga2O3 has the wider bandgap of 4.9 eV and higher breakdown electric field of 8 MV/cm. Furthermore, it can be grown from melt source, implying higher growth rate and lower fabrication cost than other wide bandgap semiconductors such as SiC, GaN and diamond for the power device applications. In this study, β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process. The growth direction and the principal surface were set to be the [010] direction and the (100) plane of the β-Ga2O3 crystal, respectively. The spectra measured by Raman an alysis could exhibit the crystal phase an d impurity dopin g in the β-Ga2O3 ingot, and the crystallinity quality and crystal direction were analyzed using high-resolution X-ray diffraction (HRXRD). The crystal quality and various properties of as-grown β-Ga2O3 ribbon was systematically analyzed in order to investigate the spatial variation in entire crystal grown by EFG method.

초광역대 반도체인 β-Ga2O3은 고전력 반도체 소재에 대한 유망한 응용으로 인해 큰 주목을 받고 있다. 5가지 다른 다형 중 가장 안정적인 상인 β-Ga2O3는 4.9 eV의 넓은 밴드갭과 8 MV/cm의 높은 항복 전계를 갖는다. 또한, 이는 용융 소스로부터 성장될 수 있어 전력반도체용 SiC, GaN 및 다이아몬드와 같은 다른 와이드 밴드갭 반도체보다 더 높은 성장률과 더 낮은 제조 비용으로 성장이 가능하다. 이 연구에서 β-Ga2O3 단결정 성장은 EFG(edge-defined film-fed growth) 방법에 의해 성장되었다. 성장 방향과 주면을 각각 β-Ga2O3 결정의 [010] 방향과 (100)면으로 성장하였다. Raman 분석의 스펙트럼으로 β-Ga2O3 잉곳의 결정상과 불순물을 확인하였고, 고해상도 X선 회절(HRXRD)을 이용하여 결정 품질과 결정 방향을 분석하였다. 또한 EFG 방법으로 성장한 β-Ga2O3 리본형태의 잉곳을 각 위치별로 결정 품질과 다양한 특성을 체계적으로 분석하였다.

Keywords

Acknowledgement

이 연구는 2022년 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원(No. 2019R1A6C1010045)과 2022년 정부(산업통상자원부)의 재원으로 한국산업기술진흥원의 지원(P0012451, 2022년 산업혁신인재성장지원사업) 및 대한민국 교육부(NRF-2021M3H4A3A01061782)가 지원하는 한국연구재단(NRF)의 지원을 받아 수행된 연구입니다.

References

  1. J.Y. Tsao, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Johnson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Van de Walle, E. Bellotti, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W. Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C.N. Pilawa-Podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback and J.A. Simmons, "Ultrawide-bandgap semiconductors: research opportunities and challenges", Adv. Electron. Mater. 4 (2018) 1600501.
  2. M. Higashiwaki and G.H. Jessen, "Guest Editorial: The dawn of gallium oxide microelectronics", Appl. Phys. Lett. 112 (2018) 060401.
  3. M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui and S. Yamakoshi, "Depletion-mode Ga2O3 metal-oxide-semi-conductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics", Appl. Phys. Lett. 103 (2013) 123511.
  4. T. Onuma, S. Saito, K Sasaki, T. Masui, T. Yamaguchi, T. Honda and M. Higashiwaki, "Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy", Jpn. J. Appl. Phys. 54 (2015) 112601.
  5. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui and S. Yamakoshi, "Development of gallium oxide power devices", Phys. Status Solidi (a) 211 (2014) 21.
  6. R. Roy, V.G. Hill and E.F. Osborn, "Polymorphism of Ga2O3 and the system Ga2O3-H2O", J. Am. Chem. Soc. 74 (1952) 719.
  7. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li and W. Tang, "Review of Ga2O3-based optoelectronic devices", Mater. Today Phys. 11 (2019) 100157.
  8. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa and Y. Yaguchi, "Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method", Jpn. J. Appl. Phys. 47 (2008) 8506.
  9. H. Aida, K. Nishiguchi, H. Takeda, N, Aota, K. Sunakawa and Y. Yaguchi, "Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method", Jpn. J. Appl. Phys. 47 (2008) 8506.
  10. K. Zhang, Z. Xu, S. Zhang, H. Wang, H. Cheng, J. Hao, J. Wu and F. Fang, "Raman and photoluminescence properties of un-/ion-doped β-Ga2O3 single-crystals prepared by edge-defined film-fed growth method", Physica B Condens. Matter 600 (2021) 412624.
  11. D. Dohy, G. Lucazeau and A. Revcolevschi, "Raman spectra and valence force field of single-crystalline β-Ga2O3", J. Solid State Chem. 45 (1982) 180.