Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2022.32.5.292

Research Trends on Developments of High-performance Perfluorinated Sulfonic Acid-based Polymer Electrolyte Membranes for Polymer Electrolyte Membrane Fuel Cell Applications  

Choi, Chanhee (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Hwang, Seansoo (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Kim, Kihyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
Publication Information
Membrane Journal / v.32, no.5, 2022 , pp. 292-303 More about this Journal
Abstract
An eco-friendly energy conversion device without the emission of pollutants has gained much attention due to the rapid use of fossil fuels inducing carbon dioxide emissions ever since the first industrial revolution in the 18th century. Polymer electrolyte membrane fuel cells (PEMFCs) that can produce water during the reaction without the emission of carbon dioxide are promising devices for automotive and residential applications. As a key component of PEMFCs, polymer electrolyte membranes (PEMs) need to have high proton conductivity and physicochemical stability during the operation. Currently, perfluorinated sulfonic acid-based PEMs (PFSA-PEMs) have been commercialized and utilized in PEMFC systems. Although the PFSA-PEMs are found to meet these criteria, there is an ongoing need to improve these further, to be useful in practical PEMFC operation. In addition, the well-known drawbacks of PFSA-PEMs including low glass transition temperature and high gas crossover need to be improved. Therefore, this review focused on recent trends in the development of high-performance PFSA-PEMs in three different ways. First, control of the side chain of PFSA copolymers can effectively improve the proton conductivity and thermal stability by increasing the ion exchange capacity and polymer crystallinity. Second, the development of composite-type PFSA-PEMs is an effective way to improve proton conductivity and physical stability by incorporating organic/inorganic additives. Finally, the incorporation of porous substrates is also a promising way to develop a thin pore-filling membrane showing low membrane resistance and outstanding durability.
Keywords
polymer electrolyte membrane fuel cell; polymer electrolyte membrane; perfluorinated sulfonic acid; composite membrane; pore-filling membrane;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J. K. Holt, A. Noy, T. Huser, D. Eaglesham, and O. Bakajin, "Fabrication of a carbon nanotubeembedded silicon nitride membrane for studies of nanometer-scale mass transport", Nano Lett., 4, 2245 (2004).   DOI
2 T. Altalhi, M. Ginic-Markovic, N. Han, S. Clarke, and D. Losic, "Synthesis of carbon nanotube (CNT) composite membranes", Membranes, 1, 37 (2010).   DOI
3 Y.-L. Liu, Y.-H. Su, C.-M. Chang, D.-M. Wang, and J.-Y. Lai, "Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells", J. Mater. Chem., 20, 4409 (2010).   DOI
4 N. Shaari and S. K. Kamarudin, "Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview", Int. J. Energy Res., 43, 2756 (2019).   DOI
5 P. Dimitrova, K. Friedrich, U. Stimming, and B. Vogt, "Modified Nafion®-based membranes for use in direct methanol fuel cells", Solid State Ion., 150, 115 (2002).   DOI
6 Y. Devrim, H. Devrim, and I. Eroglu, "Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells", Int. J. Hydrog. Energy, 41, 10044 (2016).   DOI
7 I. S. Amiinu, W. Li, G. Wang, Z. Tu, H. Tang, M. Pan, and H. Zhang, "Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/nafion composite membranes", Electrochim. Acta, 160, 185 (2015).   DOI
8 T. Ko, K. Kim, S.-K. Kim, and J.-C. Lee, "Organic/inorganic composite membranes comprising of sulfonated Poly (arylene ether sulfone) and core-shell silica particles having acidic and basic polymer shells", Polymer, 71, 70 (2015).   DOI
9 K. Oh, O. Kwon, B. Son, D. H. Lee, and S. Shanmugam, "Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition", J. Membr. Sci., 583, 103 (2019).   DOI
10 M. Gross, G. Maier, T. Fuller, S. MacKinnon, and C. Gittleman, "Design rules for the improvement of the performance of hydrocarbon-based membranes for proton exchange membrane fuel cells (PEMFC)", Handbook of Fuel Cells, John Wiley & Sons, New York (2010).
11 Y. Oshiba, J. Tomatsu, and T. Yamaguchi, "Thin pore-filling membrane with highly packed-acid structure for high temperature and low humidity operating polymer electrolyte fuel cells", J. Power Sources, 394, 67 (2018).   DOI
12 T. Ko, K. Kim, M.-Y. Lim, S. Y. Nam, T.-H. Kim, S.-K. Kim, and J.-C. Lee, "Sulfonated poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications", J. Mater. Chem., 3, 20595 (2015).   DOI
13 J. A. Kolde, B. Bahar, M. S. Wilson, T. A. Zawodzinski, and S. Gottesfeld, "Advanced composite polymer electrolyte fuel cell membranes", ECS Trans., 1995, 193 (1995).
14 K. M. Nouel and P. S. Fedkiw, "Nafion®-based composite polymer electrolyte membranes", Electrochim. Acta, 43, 2381 (1998).   DOI
15 J. Li, M. Pan, and H. Tang, "Understanding short-side-chain perfluorinated sulfonic acid and its application for high temperature polymer electrolyte membrane fuel cells", RSC Adv., 4, 3944 (2014).   DOI
16 X. Luo, S. Holdcroft, A. Mani, Y. Zhang, and Z. Shi, "Water, proton, and oxygen transport in high IEC, short side chain PFSA ionomer membranes: consequences of a frustrated network", Phys. Chem. Chem. Phys., 13, 18055 (2011).   DOI
17 C. Wang, Z. Liu, Z. Mao, J. Xu, and K. Ge, "Preparation and evaluation of a novel self-humidifying Pt/PFSA composite membrane for PEM fuel cell", J. Chem. Eng., 112, 87 (2005).   DOI
18 C. Wang, Z. Feng, Y. Zhao, X. Li, W. Li, X. Xie, S. Wang, and H. Hou, "Preparation and properties of ion exchange membranes for PEMFC with sulfonic and carboxylic acid groups based on polynorbornenes", Int. J. Hydrog. Energy, 42, 29988 (2017).   DOI
19 N. Cele, S. Sinha Ray, S. K. Pillai, M. Ndwandwe, S. Nonjola, L. Sikhwivhilu, and M. K. Mathe, "Carbon nanotubes based nafion composite membranes for fuel cell applications", Fuel Cells, 10, 64 (2010).
20 J. Wang, C. Gong, S. Wen, H. Liu, C. Qin, C. Xiong, and L. Dong, "A facile approach of fabricating proton exchange membranes by incorporating polydopamine-functionalized carbon nanotubes into chitosan", Int. J. Hydrog. Energy, 44, 6909 (2019).   DOI
21 R. Kannan, B. A. Kakade, and V. K. Pillai, "Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalized carbon nanotubes", Angew. Chem. Int. Ed., 47, 2653 (2008).   DOI
22 K.-H. Kim, P. Heo, S.-W. Choi, C. Pak, H. Chang, S.-K. Kim, K.-H. Kim, T. Ko, and J.-C. Lee, "Synthesis of cross-linked membranes for high temperature polymer electrolyte membrane fuel cells (PEMFC)", J. Am. Chem. Soc., 243, 1155 (2012).
23 V. Mehta and J. S. Cooper, "Review and analysis of PEM fuel cell design and manufacturing", J. Power Sources, 114, 32 (2003).   DOI
24 H. A. Gasteiger and M. F. Mathias, "Fundamental research and development challenges in polymer electrolyte fuel cell technology", ECS Trans., 2002, 1 (2002).
25 M. R. Tant, K. P. Darst, K. D. Lee, and C. W. Martin, "Structure and properties of short-side-chain perfluorosulfonate ionomers", ACS Symp. Ser. Am. Chem. Soc., 395, 370 (1989).
26 A. Kusoglu and A. Z. Weber, "New insights into perfluorinated sulfonic-acid ionomers", Chem. Rev., 117, 987 (2017).   DOI
27 J. A. Elliott and S. J. Paddison, "Modelling of morphology and proton transport in PFSA membranes", Phys. Chem. Chem. Phys., 9, 2602 (2007).   DOI
28 B. Torok, I. Kiricsi, A. Molnar, and G. A. Olah, "Acidity and catalytic activity of a Nafion-H/silica nanocomposite catalyst compared with a silicasupported Nafion sample", J. Catal., 193, 132 (2000).   DOI
29 E. Abouzari-Lotf, M. Etesami, and M. M. Nasef, "Canbon-based nanocomposite proton exchange membrane for fuel cell", p. 437, Carbon-Based Polymer Nanocomposites for Environ-mental and Energy Applications, Elsevier, Amsterdam (2018).
30 P. Molla-Abbasi, K. Janghorban, and M. S. Asgari, "A novel heteropolyacid-doped carbon nanotubes/Nafion nanocomposite membrane for high performance proton-exchange methanol fuel cell applications", Iran. Polym. J., 27, 77 (2018).   DOI
31 S. Ryu, B. Lee, J. H. Kim, C. Pak, and S. H. Moon, "High-temperature operation of PEMFC using pore-filling PTFE/Nafion composite membrane treated with electric field", Int. J. Energy Res., 45, 19136 (2021).   DOI
32 H. Lade, V. Kumar, G. Arthanareeswaran, and A. Ismail, "Sulfonated poly (arylene ether sulfone) nanocomposite electrolyte membrane for fuel cell applications: A review", Int. J. Hydrog. Energy, 42, 1063 (2017).   DOI
33 N. E. De Almeida and E. B. Easton, "Nafion/sulfonated silica composite membranes for PEM fuel cells", ECS Trans., 28, 29 (2010).   DOI
34 S. Y. So, Y. J. Yoon, T.-H. Kim, K. Yoon, and Y. T. Hong, "Sulfonated poly (arylene ether sulfone)/functionalized silicate hybrid proton conductors for high-temperature proton exchange membrane fuel cells", J. Membr. Sci., 381, 204 (2011).   DOI
35 K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, "Enhanced physical stability and chemical durability of sulfonated poly (arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications", J. Membr. Sci., 525, 125 (2017).   DOI
36 L. Wang, B. Yi, H. Zhang, Y. Liu, D. Xing, Z.-G. Shao, and Y. Cai, "Sulfonated polyimide/PTFE reinforced membrane for PEMFCs", J. Power Sources, 167, 47 (2007).   DOI
37 K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly (arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017).   DOI
38 Z.-G. Shao, P. Joghee, and I.-M. Hsing, "Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells", J. Membr. Sci., 229, 43 (2004).   DOI
39 H.-B. Song, J.-H. Park, J.-S. Park, and M.-S. Kang, "Pore-filled proton-exchange membranes with fluorinated moiety for fuel cell application", Energies, 14, 4433 (2021).   DOI
40 R. Gloukhovski, V. Freger, and Y. Tsur, "Understanding methods of preparation and characterization of pore-filling polymer composites for proton exchange membranes: A beginner's guide", Rev. Chem. Eng., 34, 455 (2018).   DOI
41 Hansol Ko, Mijeong Kim, Sang Yong Nam, and Kihyun Kim, "Research of cross-linked hydrocarbon based polymer electrolyte membranes for polymer electrolyte membrane fuel cell applications", Membr. J., 30, 395 (2020).   DOI
42 B. Freedman, G. Stinson, and P. Lacoul, "Carbon credits and the conservation of natural areas", Environ. Rev., 17, 1 (2009).   DOI
43 T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.-G. Olabi, "Advances in stationary and portable fuel cell applications", Int. J. Hydrog. Energy, 41, 16509 (2016).   DOI
44 M. W. Tsang and S. Holdcroft, "Alternative proton exchange membranes by chain-growth polymerization.", Green Energy Environ., 10, 651 (2012).
45 E. Y. Safronova, A. Osipov, and A. Yaroslavtsev, "Short side chain Aquivion perfluorinated sulfonated proton-conductive membranes: Transport and mechanical properties", Pet. Chem., 58, 130 (2018).   DOI
46 D. Cha, S. W. Jeon, W. Yang, D. Kim, and Y. Kim, "Comparative performance evaluation of selfhumidifying PEMFCs with short-side-chain and long-side-chain membranes under various operating conditions", Energy, 150, 320 (2018).   DOI
47 Y. Garsany, R. W. Atkinson, M. B. Sassin, R. M. Hjelm, B. D. Gould, and K. E. Swider-Lyons, "Improving PEMFC performance using short-sidechain low-equivalent-weight PFSA ionomer in the cathode catalyst layer", J. Electrochem. Soc., 165, F381 (2018).   DOI
48 A. Ghielmi, P. Vaccarono, C. Troglia, and V. Arcella, "Proton exchange membranes based on the short-side-chain perfluorinated ionomer", J. Power Sources, 145, 108 (2005).   DOI
49 R. B. Moore III and C. R. Martin, "Morphology and chemical properties of the Dow perfluorosulfonate ionomers", Macromolecules, 22, 3594 (1989).   DOI
50 M. Tant, K. Lee, K. Darst, and C. Martin, "Effect of side-chain length on the properties of perfluorocarbon ionomers", Polym. Mater. Sci. Eng, 58, 1074 (1988).
51 F. Shang, L. Li, Y. Zhang, and H. Li, "PWA/silica/PFSA composite membrane for direct methanol fuel cells", J. Mater. Sci., 44, 4383 (2009).   DOI
52 Jae-Joon Lee and Choi seok hwan, "A study on the development of the planning indicator for carbon neutral on the district unit plan", J. Korea Plan. Assoc., 44, 119 (2009).
53 V. UNFCCC, "Adoption of the Paris agreement", Proposal by the President, 282, 2 (2015).
54 A. Stassi, I. Gatto, E. Passalacqua, V. Antonucci, A. Arico, L. Merlo, C. Oldani, and E. Pagano, "Performance comparison of long and short-side chain perfluorosulfonic membranes for high temperature polymer electrolyte membrane fuel cell operation", J. Power Sources, 196, 8925 (2011).   DOI
55 N. J. Economou, J. R. O'Dea, T. B. McConnaughy, and S. K. Buratto, "Morphological differences in short side chain and long side chain perfluorosulfonic acid proton exchange membranes at low and high water contents", RSC Adv., 3, 19525 (2013).   DOI
56 K. Talukdar, P. Gazdzicki, and K. A. Friedrich, "Comparative investigation into the performance and durability of long and short side chain ionomers in polymer electrolyte membrane fuel cells", J. Power Sources, 439, 227078 (2019).   DOI
57 G. Alberti and M. Casciola, "Composite membranes for medium-temperature PEM fuel cells", Annu. Rev. Mater. Res., 33, 129 (2003).   DOI
58 W. Daud, R. Rosli, E. Majlan, S. Hamid, R. Mohamed, and T. Husaini, "PEM fuel cell system control: A review", Renew. Energy, 113, 620 (2017).   DOI
59 H.-W. Rhee, M.-K. Song, Y.-T. Kim, K.-H. Kim, "High temperature proton exchange membrane using ionomer/solid proton conductor, preparation method thereof and fuel cell containing the same", US Patent 7,977,008, July 12 (2011).
60 S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, "Review of the proton exchange membranes for fuel cell applications", Int. J. Hydrog. Energy, 35, 9349 (2010).   DOI
61 M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Study on control of polymeric architecture of sulfonated hydrocarbon-based polymers for high-performance polymer electrolyte membranes in fuel cell applications", Polymers, 13, 3520 (2021).   DOI
62 P. Heo, M. Kim, H. Ko, S. Y. Nam, and K. Kim, "Self-humidifying membrane for high-performance fuel cells operating at harsh conditions: Heterojunction of proton and anion exchange membranes composed of acceptor-doped SnP2O7 composites", Membranes, 11, 776 (2021).   DOI
63 M. R. Molavian, A. Abdolmaleki, and K. Eskandari, "Theoretical investigation of proton-transfer in different membranes for PEMFC applications in low humidity conditions", Comput. Mater. Sci., 122, 126 (2016).   DOI
64 M.-Y. Lim, J. Oh, H. J. Kim, K. Y. Kim, S.-S. Lee, and J.-C. Lee, "Effect of antioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites", Eur. Polym. J., 69, 156 (2015).   DOI
65 A. R. Kim, M. Vinothkannan, M. H. Song, J.-Y. Lee, H.-K. Lee, and D. J. Yoo, "Amine functionalized carbon nanotube (ACNT) filled in sulfonated poly (ether ether ketone) membrane: Effects of ACNT in improving polymer electrolyte fuel cell performance under reduced relative humidity", Compos. B. Eng., 188, 107890 (2020).   DOI
66 A. K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, and H. Kim, "Sulfonated graphene- nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity", J. Phys. Chem. C, 120, 15855 (2016).   DOI
67 C. Yin, B. Xiong, Q. Liu, J. Li, L. Qian, Y. Zhou, and C. He, "Lateral-aligned sulfonated carbonnanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties", J. Membr. Sci., 591, 117356 (2019).   DOI
68 M. Taufiq Musa, N. Shaari, and S. K. Kamarudin, "Carbon nanotube, graphene oxide and montmorillonite as conductive fillers in polymer electrolyte membrane for fuel cell: an overview", Int. J. Energy Res., 45, 1309 (2021).   DOI