• Title/Summary/Keyword: crystalline Si film

Search Result 344, Processing Time 0.037 seconds

Understanding the Electrical Property of Si-doped β-Ga2O3 via Thermal Annealing Process (열처리 공정을 이용한 Si-doped β-Ga2O3 박막의 전기적 특성의 이해)

  • Lee, Gyeongryul;Park, Ryubin;Chung, Roy Byung Kyu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.19-24
    • /
    • 2020
  • In this work, the electrical property of Si-doped β-Ga2O3 was investigated via a post-growth annealing process. The Ga2O3 samples were annealed under air (O-rich) or N2 (O-deficient) ambient at 800~1,200℃ for 30 mins. There was no correlation between the crystalline quality and the electrical conductivity of the films within the experimental conditions explored in this work. However, it was observed the air ambient led to severe degradation of the film's electrical conductivity while N2-annealed samples exhibited improvement in both the carrier concentration and Hall mobility measured at room temperature. Interestingly, the x-ray photoemission spectroscopy (XPS) revealed that both annealing conditions resulted in higher concentration of oxygen vacancy (VO). Although it was a slight increase for the air-annealed sample, high resistivity of the film strongly suggests that VO cannot be a shallow donor in β-Ga2O3. Therefore, the enhancement of the electrical conductivity of N2-annealed samples must be originated from something other than VO. One possibility is the activation of Si. The XPS analysis of N2-annealed samples showed increasing relative peak area of Si 2p associated with SiOx with increasing annealing temperature from 800 to 1,200℃. However, it was unclear whether or not this SiOx was responsible for the improvement as the electrical conductivity quickly degraded above 1,000℃ even under N2 ambient. Furthermore, XPS suggested the concentration of Si actually increased near the surface as opposed to the shift of the binding energy of Si from its initial chemical state to SiOx state. This study illustrates the electrical changes induced by a post-growth thermal annealing process can be utilized to probe the chemical and electrical states of vacancies and dopants for better understanding of the electrical property of Si-doped β-Ga2O3.

Effect of plasma treatments on the initial stage of micro-crystalline silicon thin film

  • 장상철;남창우;홍진표;김채옥
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.71-71
    • /
    • 1999
  • 현재 소자 제작에 응용되는 수소화된 비정질 실리콘은 PECVD 방법으로 제작하는 것이 보편적인 방법이다. 그러나 비정질 실리콘 박막 트랜지스터는 band gap edge 근처에서 국재준위가 많아 mobility가 작으며 상온에서 조차 불안정하여 신뢰성이 높지 않고, 도핑된 비정질 실리콘의 높은 비저항 등의 단점으로 인하여 고속 회로에 응용이 불가능하다. 반면 다결정질 실리콘 박막 트랜지스터는 a-Si:H TFT 에 비해 재현성이 우수하고 high resolution, high resolution, high contrast LCD에 응용할 수 있다. 하지만, 다결정 실리콘의 grain boundary로 인해 단결정에 비해 많은 defect 들이 존재하여 전도성을 감소시킨다. 따라서 Mobility를 증가시키기 위해서 grain size를 증가시키고 grain boundary 내에 존재하는 trap center를 감소시켜야 한다. 따라서 본 실험에서는 PECVD 장비로 초기 기판을 plasma 처리하여 다결정 실리콘 박막을 제작하여, 기판 처리에 대한 다결정 실리콘 박막의 성장의 특성을 조사하였다. 실험 방법으로는 PECVD 시스템을 이용하여 SiH4 gas와 H2 gas를 선택적으로 증착시키는 LBL 방법을 사용하여 $\mu$c-Si:H 박막을 제작하였다. 비정질 층을 gas plasma treatment 하여 다결정질 실리콘의 증착 initial stage 관찰을 주목적으로 관찰하였다. 다결정 실리콘 박막의 구조적 성질을 조사하기 위하여 Raman, AFM, SEM, XRD를 이용하여 grain 크기와 결정화도에 대해 측정하여 결정성장 mechanism을 관측하였다. LBL 방법으로 증착시킨 박막의 Raman 분석을 통해서 박막 증착 초기에 비정질이 증착된 후에 결정질로 상태가 변화됨을 관측할 수 있었고, SEM image를 통해서 증착 회수를 증가시키면서 grain size가 작아졌다 다시 커지는 현상을 볼 수 있었다. 이 비정질 층의 transition layer를 gas plasma 처리를 통해서 다결정 핵 형성에 영향을 관측하여 적정한 gas plasma를 통해서 다결정질 실리콘 박막 증착 공정을 단축시킬 수 있는 가능성을 짐작할 수 있었고, 또한 표면의 roughnes와 morphology를 AFM을 통하여 관측함으로써 다결정 박막의 핵 형성에 알맞은 증착 표면 특성을 분석 할 수 있었다.

  • PDF

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Magnetic and Electric Transport Properties of MnTe Thin Film Grown by Molecular Beam Epitaxy (분자선 증착법에 의해 성장한 MnTe 박막의 자기적 및 전기수송 특성)

  • Kim, Woo-Chul;Bae, Sung-Whan;Kim, Sam-Jin;Kim, Chul-Sung;Kim, Kwang-Joo;Yoon, Jung-Bum;Jung, Myung-Hwa
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.2
    • /
    • pp.81-85
    • /
    • 2007
  • MnTe layers of high crystalline quality were successfully grown on Si(100) : B and Si(111) substrates by molecular beam epitaxy (MBE). Under tellurium-rich condition and the substrate temperature around $400^{\circ}C$, a layer thickness of $700{\AA}$ could be easily obtained with the growth rate of $1.1 {\AA}/s$. We investigated the structural, magnetic and transport properties of MnTe layers by using x-ray diffraction (XRD), superconducting quantum interference device (SQUID) magnetometry, and physical properties measurement system (PPMS). Characterization of MnTe layers on Si(100) : B and Si(111) substrates by XRD revealed a hexagonal structure of polycrystals with lattice parameters, ${\alpha}=4.143{\pm}0.001{\AA}\;and\;c=6.707{\pm}0.001{\AA}$. Investigation of magnetic and transport properties of MnTe films showed anomalies unlike antiferromagnetic powder MnTe. The temperature dependence of the magnetization data taken in zero-field-tooling (ZFC) and field-cooling (FC) conditions indicates three magnetic transitions at around 21, 49, and 210 K as well as the great irreversibility between ZFC and FC magnetization in the films. These anomalies are attributable to a magnetic-elastic coupling in the films. Magnetization measurements indicate ferromagnetic behaviour with hysteresis loops at 5 and 300 K for MnTe polycrystalline film. The coercivity ($H_c$) values at 5 and 300 K are 55 and 44 Oe, respectively. In electro-transport measurements, the temperature dependence of resistivity revealed a noticeable semiconducting behaviours and showed conduction via Mott variable range hopping at low temperatures.

Atomic Layer Deposition of TiO2 Thin Films from Ti(OiPr)2(dmae)2 and H2O

  • Lee, Jae P.;Park, Mi H.;Chung, Taek-Mo;Kim, Yun-Soo;Sung, Myung M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.475-479
    • /
    • 2004
  • $TiO_2$ thin films were grown on Si (100) substrates by atomic layer deposition using $[Ti(OPr^i )_2(dmae)_2]$ and water as precursors. The thickness, chemical composition, crystalline structure, and morphology of the deposited films were investigated by transmission electron microscopy, UV spectrometry, X-ray photoelectron pectroscopy, X-ray diffraction, and atomic force microscopy. The results show that $TiO_2$ ALD using $[Ti(OPr^i )_2(dmae)_2]$ as a precursor is self-controlled at temperatures of 100-300$^{\circ}C$. At the growth temperatures below 300$^{\circ}C$, the surface morphology of the $TiO_2$ films is smooth and uniform. The $TiO_2$ film was grown with a preferred orientation toward the [101] direction at 400$^{\circ}C$.

Effect of Copper Content on the Microstructural Properties of Mo-Cu-N Films (Copper 함량에 따른 Mo-Cu-N 박막의 미세구조 변화에 대한 연구)

  • Shin, Jung-Ho;Choi, Kwang-Soo;Wang, Qi-Min;Kim, Kwang-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.43 no.6
    • /
    • pp.266-271
    • /
    • 2010
  • Ternary Mo-Cu-N films were deposited on Si wafer substrates with various copper contents by magnetron sputtering method using Mo target and Cu target in $Ar/N_2$ gaseous atmosphere. As increasing $N_2$ pressure, the microstructure of Mo-N films changed from ${\gamma}-Mo_2N$ of (111) having face-centered-cubic (FCC) structure to $\delta$-MoN of (200) having hexagonal structure. Detailed the microstructures of the Mo-Cu-N coatings were studied by X-ray diffraction, scanning electron microscopy and field emission transmission electron microscope. The results indicated that the incorporation of copper into the growing Mo-N coating led to the $Mo_2N$ and MoN crystallites were more well-distributed and refined and the copper existed in grain boundary. Ternary Mo-Cu-N films had a composite microstructure of the nanosized crystal crystalline ${\gamma}-Mo_2N$ and $\delta$-MoN surrounded by amorphous $Cu_3N$ phase.

Growth and Characterization of I $n_{x}$G $a_{1-x}$N Epitaxial Layer for Blue Light Emitter (청색발광소자를 위한 I $n_{x}$G $a_{1-x}$N 결정성장 및 특성평가)

  • 이숙헌;이제승;허정수;이병규;이승하;함성호;이용현;이정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.15-23
    • /
    • 1998
  • Single crystalline I $n_{x}$G $a_{1-x}$ N thin film was grwon by MOCVD on (001) sapphire substrate for the blue light emitting devices. A good quality of I $n_{0.13}$G $a_{0.87}$N/GaN heterostructure grwon above 700.deg. C was confiremed by various characterization techniques of AFM, RHEED and DC-XRD. Through PL measurement at room temperautre for the Si-Zn co-doped I $n_{x}$G $a_{a-x}$N/GaN structure grwon at 800.deg. C to obtain blue wavelength emission, 460-470 nm and 425 nm emission peak were observed, which are believed to be from donor-to-acceptor pair transition and band edge emission of In/x/G $a_{1-x}$ N, respectively. The result of PL measurement of the undoped MQW I $n_{x}$G $a_{1-x}$ N layer at low temperature confirmed that the strong MQW peak was resulted by exciton from the GAN barrier and carrier of DA pair confined into the well layer.ll layer.yer.r.

  • PDF

The crystalline characteristics of ZnO deposited on various cooling rates by RF sputter (RF 스퍼터링 법에 의한 ZnO 박막의 결정성과 기판의 냉각속도)

  • Park, Sung-Hyun;Lee, Neung-Hun;Ji, Seung-Han;Jeon, Seok-Hwan;Lee, Sang-Hoon;Chu, Soon-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.257-258
    • /
    • 2006
  • ZnO thin films were prepared by RF magnetron sputter deposition on p-Si(100) wafer with various cooling rates of substrate temperature such as the substrates were pre-heated to $400^{\circ}C$ before the deposition and then cooled down naturally or slowly to $300^{\circ}C$, $200^{\circ}C$, $100^{\circ}C$, and R.T., by the temperature controller during the deposition. The crystall me and micro-structural characteristics of the films were investigated by XRD and SEM ZnO films which cooled down naturally or slowly by temperature controller during deposition, especially the film were deposited with cooling down from $400^{\circ}C$ to $200^{\circ}C$ slowly, showed the most outstanding c-axis preferred orientation.

  • PDF

Fabrication of Boron-Doped Polycrystalline Silicon Films for the Pressure Sensor Application (압력센서용 Boron이 첨가된 다결정 Silicom 박막의 제조)

  • 유광수;신광선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • The boron-doped polycrystalline silicon films which can be used in pressure sensors were fabricated in a high-vacuum resistance heating evaporator. Poly-Si films were deposited on quartz substrates at various temperatures and the boron was doped to the silicon film in a diffusion furnace using BN wafer. The silicon films deposited at $500^{\circ}C$ was amorphous, began to show crystalline at $600^{\circ}C$, and became polycrystalline at $700^{\circ}C$. After doping boron at $900^{\circ}C$for 10 minutes, the resistivity of the films was in the range of $0.1{\Omega}cm~1.5{\Omega}cm$, the boron density was $9.4\times10^{15}~2.1\times{10}^{17}cm^{-3}$, and the grain size was $107{\AA}~191{\AA}$.

  • PDF

Growth Behavior of Nanocrystalline CrN Coatings by Inductively Coupled Plasma (ICP) Assisted Magnetron Sputtering (유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 증착된 나노결정질 CrN 코팅막의 성장)

  • Seo, Dae-Han;Chun, Sung-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.556-560
    • /
    • 2012
  • Nanocrystalline CrN coatings were deposited by DC and ICP-assisted magnetron sputtering on Si (100) substrates. The influences of the ICP power on the microstructural and crystallographic properties of the coatings were investigated. For the generation of the ICP, radio frequency was applied using a dielectric-encapsulated coil antenna installed inside the deposition chamber. As the ICP power increased from 0 to 500W, the crystalline grain size decreased. It is believed that the decrease in the crystal grain size at higher ICP powers is due to resputtering of the coatings as a result of ion bombardment as well as film densification. The preferential orientation of CrN coatings changed from (111) to (200) with an increase in the ICP power. The ICP magnetron sputtering CrN coatings showed excellent surface roughness compared to the DC magnetron sputtering coatings.