• Title/Summary/Keyword: crystal growth rate

Search Result 543, Processing Time 0.025 seconds

7Li MAS NMR studies of Li4P2O7 and LiFePO4 materials (LiFePO4와 Li4P2O77Li MAS NMR 특성 연구)

  • Han, Doug-Young;Park, Nam-Sin;Lee, Sang-Hyuk;Lee, Hak-Man;Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.15-20
    • /
    • 2011
  • [ $^7Li$ ]Magic Angle Spinning (MAS) NMR spectroscopy has been used to study the lithium local environments in $Li_4P_2O_7$ and$LiFePO_4$ materials. The purpose of this study was to know the structure of the solid electrolyte interphase (SEI) in lithium ion cells composed of $LiFePO_4$ as cathode material. $Li_4P_2O_7$ and $LiFePO_4$ were prepared by a solid-state reaction. The $^7Li$ MAS NMR experiments were carried out at variable temperatures in order to observe the local structure changes at the temperatures in $Li_4P_2O_7$ system. The $^7Li$ MAS NMR spectra of in $Li_4P_2O_7$ indicate that the lithium local environments in $Li_4P_2O_7$ were not changed in the temperature range between $27^{\circ}C$ and $97^{\circ}C$ Through this work, we confirmed that the small amount of $Li_4P_2O_7$ less than 5.0 wt% in $LiFePO_4$ could be clearly measured by the $^7Li$ MAS NMR spectroscopy at high spinning rate over than 11 kHz.

Effect of Si sludge addition on the properties of lightweight geopolymers (Si 슬러지의 첨가가 경량지오폴리머 물성에 미치는 영향)

  • Kim, Minjeong;Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.257-263
    • /
    • 2019
  • Lightweight geopolymers were fabricated with non-milled IGCC slag and Si sludge as a bloating material. The relationship between addition amount of Si sludge and physical/chemical properties of lightweight geopolymers was investigated. When the geopolymers were made by mixing IGCC slag, alkali activator, and more than 10 wt.% Si sludge, the temperature of the geopolymer pastes reached higher than 130℃ in a few minutes. This exothermic reaction accelerated the geopolymer reaction; however, it was difficult to make geopolymer specimens because of a rapid bloating reaction. Both compressive strength and density of the specimens tend to decrease with an addition of Si sludge; however, there was little difference in both compressive strength and density with addition of Si sludge more than 10 wt.%. Because there was a limit to get low density geopolymers by simply increasing the addition of Si sludge, the control of pore size and distribution of geopolymer is more important by controlling flow rate of the paste through the control of W/S ratio. Therefore, it is important to control process conditions, appropriate W/S ratio for the bloating than the control of Si sludge. The optimum W/S ratio was 0.20 for the addition of Si sludge less than 30 wt.% and W/S ratio should be more than 0.28 for the addition of Si sludge more than 30 wt.%, although there was no practical application in fact.

Characterization of geopolymer made of municipal solid waste incineration ash slag (도시쓰레기 소각재 슬래그로 제조된 지오폴리머의 특성)

  • Kim, Yongsung;Kang, Seunggu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • In this research, the geopolymer was fabricated using municipal solid waste incineration ash (denoted as MSWIA) slag and alkali activator, NaOH and its properties were analyzed. Particularly, the effects of NaOH molarity, particle size of MSWIA, and liquid/solids ratio on the compressive strength of geopolymers were investigated. The compressive strength of geopolymers fabricated increased with finer grain size of MSWIA, and optimum value of the liquid/solids ratio was identified as 0.13. As the molarity of the NaOH increased, the compressive strength of geopolymers was increased. Even more the 20 M of NaOH, but the strength was not increased. The calcium aluminum silicate and calcium aluminum silicate hydrate zeolites were generated in the geopolymer fabricated with more than 20 M of NaOH, with some unreacted silica and unknown crystals remained. The highest compressive strength, 163 MPa, of geopolymer was appeared at conditions of curing temperature $70^{\circ}C$, and 20 M of NaOH, indicating that the high concentration of NaOH accelerates the geopolymer reaction and dense microstructure. The high-strength geopolymer fabricated in the present study is expected to contribute significantly to develop the field of cement alternative substances and to improve the recycling rate of MSWIA slag.

Synthesis and characterization of three-dimensional monodispersed NiO/NiCo2O4 via Ni3[Co(CN)6]2 PBA nanocubes (Ni3[Co(CN)6]2 PBA 나노큐브를 통한 단분산된 3차원 구조의 NiO/NiCo2O4 제조 및 특성 평가)

  • Kwag, Sung Hoon;Lee, Young Hun;Kim, Min Seob;Lee, Chul Woo;Kang, Bong Kyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.110-114
    • /
    • 2017
  • $NiO/NiCo_2O_4$ nanocubes were successfully synthesized via the calcination process of $Ni_3[Co(CN)_6]_2$ PBAs. The prepared monodispersed $Ni_3[Co(CN)_6]_2$ PBAs were aggregated by 'self-assembly' of the nuclei generated during the synthesis reaction. The self-assembly rate of the particles is affected by the temperature and the amount of surfactant SDBS (sodium dodecylbenzenesulfonate). FESEM analysis shows that monodispersed 200 nm PBA nanocubes are obtained at 0.25 g SDBS and $60^{\circ}C$ temperature. Thermal behavior was confirmed by thermogravimetric-differential thermal analysis (TG-DTA) to determine optimal calcination conditions. Then, field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) analyzes were performed to investigate the morphology and crystallinity of the particles precursors and $NiO/NiCo_2O_4$ nanocubes.

Durability of concrete using sulfur-modified polymer (개질유황 폴리머를 사용한 콘크리트의 내구성 평가)

  • Hong, Chang Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.5
    • /
    • pp.205-211
    • /
    • 2015
  • Most of the sulfur is obtained from desulfurization of natural gas and crude oil. In Korea, more than 120 tons of sulfur are produced by refinery, and about 50 % of the produced sulfur is used as a raw material for the production of fertilizer and sulfuric acid. Modified sulfur is manufactured from excessive sulfur that could be used to improve concrete properties, and this study evaluated concrete strength and durability that contains modified sulfur. Flexural and compressive strengths of concrete with sulfur modified polymer were comparable to those of OPC concrete with mixing water at similar temperatures, while the strengths increased a little as mixing water temperature increased. It was also confirmed that the resistance to freeze-thaw damage was more dependent on entrained air characteristics obtained by a proper use of air entraining agent than on the use of sulfur modified polymer. When concrete was immersed in 5 % sulfuric acid, the rate of reduction in compressive strength of OPC concrete was less than 1/4 of the strength reduction of concrete with sulfur modified polymer. Also, the resistance of concrete with sulfur modified polymer to scaling due to the use of de-icing salt was evaluated as Class 1, while that of OPC concrete was evaluated as Class 4, as aggregates were exposed. Accordingly, it is believed that sulfur modified polymer could be effectively used for bridge deck concrete since sulfur modified polymer improves the durability of concrete.

Phase transformation and magnetic properties of NiFe thin films on Si(100) wafer and SiO2/Si(100) substrate by co-sputtering (Si(100) wafer와 SiO2/Si(100) 기판에 동시 스퍼터링법으로 증착된 NiFe 합금 박막의 상변화 및 자기적 특성)

  • Kang, Dae-Sik;Song, Jong-Han;Nam, Joong-Hee;Cho, Jeong-Ho;Chun, Myoung-Pyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.216-220
    • /
    • 2010
  • Ni-Fe alloys have various applications such as thin film inductor, thin film transformer, magnetic head's shield case, etc. Magnetic properties of Ni-Fe thin films depend on the process parameters such as thickness, contents, deposition rate, substrates, etc. In this study, NiFe films with a thickness of about 150nm were deposited on Si(100) wafer and $SiO_2$/Si(100) substrate at room temperature by a DC magnetron co-sputtering using Fe and Ni targets. Their phase formation and magnetic properties as a function of annealing temperature were investigated with XRD, FE-SEM and VSM. The assputtered films have BCC structure. With increasing annealing temperature, NiFe thin film for $SiO_2$/Si(100) substrate transformed completely from BCC to FCC phase above $500^{\circ}C$, but some BCC phase remained above $500^{\circ}C$ on Si(100) wafer. For samples annealed at $450^{\circ}C$, squareness ratio of NiFe thin film shows peak value and its saturation magnetization is around 0.0118 emu, which means that the optimum annealing temperature of NiFe thin film seems to be $450^{\circ}C$. The saturation magnetization of films decreased rapidly above the annealing temperature of $500^{\circ}C$ due to phase transformation from BCC to FCC phase.

Enhanced size uniformity and dispersibility of BaTiO3 nanoparticles by hydrothermal synthesis (균일성과 분산성이 향산된 BaTiO3 나노입자의 수열합성)

  • Cho, Hoyeon;Park, Byoungnam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.91-95
    • /
    • 2020
  • In this study, we report a hydrothermal synthesis in which BaTiO3 nanoparticles (NPs) with enhanced size uniformity and dispersibility are synthesized by increased time and temperature, increasing nucleation and diffusion rates. The formation process of an uniform size of 20 nm BaTiO3 NPs, which has not been extensively researched, was optimized through hydrothermal synthesis at 180℃. Simultaneous increase in the nucleation rate of TiO2 and diffusion length of Ba2+ ions, resulting from a higher temperature, allowed for the synthesis of BaTiO3 NPs (20 nm) with significantly enhanced size-uniformity. The size and crystallinity of BaTiO3 NPs which exhibit excellent dispersibility in hexane solvent were investigated using transmission electron microscopy and X-ray diffraction. The results presented herein provide insights into improving the size uniformity and dispersibility of BaTiO3 NPs by hydrothermal synthesis for applications to variety of electronic devices.

Effect of O2/Ar+O2 concentration on phase stability of transparent Mn doped SnO2 monolayer film (혼합기체 O2/Ar+O2 농도 변화가 Mn 도핑된 SnO2 투명전도막의 상 안정성에 미치는 영향)

  • Kim, Taekeun;Jang, Guneik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.154-158
    • /
    • 2021
  • The optical transmittance of Mn-doped SnO2 monolayer film increased gradually from 80.9 to 85.4 % at 550 nm wavelengths upon increasing the O2/Ar+O2 concentration rate from 0 to 7.9 % and the band gap energy changed from 3.0 to 3.6 eV. The resistivity tended to decrease from 3.21 Ω·cm to 0.03 Ω·cm, reaching a minimum at 2.7 %, and then gradually increased from 0.03 to 52.0 Ω·cm at higher O2/Ar+O2 gas concentration ratio. Based on XPS spectra analysis, the Sn 3d5/2 peak of Mn-doped SnO2 single layer shifted slightly from 486.40 to 486.58 and O1s peak also shifted from 530.20 to 530.33 eV with increase the O2/Ar+O2 concentration ratio. Therefore, the XPS spectra results indicate that a multiphase with SnO and SnO2 coexisted in the sputtered Mn-doped SnO2 monolayer film.

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

Bottom electrode optimization for the applications of ferroelectric memory device (강유전체 기억소자 응용을 위한 하부전극 최적화 연구)

  • Jung, S.M.;Choi, Y.S.;Lim, D.G.;Park, Y.;Song, J.T.;Yi, J.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.599-604
    • /
    • 1998
  • We have investigated Pt and $RuO_2$ as a bottom electrode for ferroelectric capacitor applications. The bottom electrodes were prepared by using an RF magnetron sputtering method. Some of the investigated parameters were a substrate temperature, gas flow rate, RF power for the film growth, and post annealing effect. The substrate temperature strongly influenced the surface morphology and resistivity of the bottom electrodes as well as the film crystallographic structure. XRD results on Pt films showed a mixed phase of (111) and (200) peak for the substrate temperature ranged from RT to $200^{\circ}C$, and a preferred (111) orientation for $300^{\circ}C$. From the XRD and AFM results, we recommend the substrate temperature of $300^{\circ}C$ and RF power 80W for the Pt bottom electrode growth. With the variation of an oxygen partial pressure from 0 to 50%, we learned that only Ru metal was grown with 0~5% of $O_2$ gas, mixed phase of Ru and $RuO_2$ for $O_ 2$ partial pressure between 10~40%, and a pure $RuO_2$ phase with $O_2$ partial pressure of 50%. This result indicates that a double layer of $RuO_2/Ru$ can be grown in a process with the modulation of gas flow rate. Double layer structure is expected to reduce the fatigue problem while keeping a low electrical resistivity. As post anneal temperature was increased from RT to $700^{\circ}C$, the resistivity of Pt and $RuO_2$ was decreased linearly. This paper presents the optimized process conditions of the bottom electrodes for memory device applications.

  • PDF