DOI QR코드

DOI QR Code

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I

NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I

  • Yong Il Park (Engineering Material Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Ji Hun Jung (Department of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Sung Hyun Woo (Department of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Jung Heon Lee (Department of Advanced Materials Science & Engineering, Sungkyunkwan Univ.) ;
  • Hyeong-Jun Kim (Engineering Material Center, Korea Institute of Ceramic Engineering & Technology)
  • 박용일 (한국세라믹기술원 엔지니어링소재센터) ;
  • 정지훈 (성균관대학교 신소재공학과) ;
  • 우성현 (성균관대학교 신소재공학과) ;
  • 이정헌 (성균관대학교 신소재공학과) ;
  • 김형준 (한국세라믹기술원 엔지니어링소재센터)
  • Received : 2024.06.10
  • Accepted : 2024.06.13
  • Published : 2024.06.30

Abstract

In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

본 연구에서는 NCM [Li(NixCoyMnz)O2] 양극활물질을 합성하기 위한 내화갑의 재료로 순수 금속 재료인 Nickel을 제안하였다. Nickel은 산화에 강하고 녹는점이 높은 금속으로 알려져 있다. 니켈은 NCM 양극활물질의 주성분 중 하나로 양극물질 합성 동안에 saggar로 부터의 오염에 대한 문제에 자유로울 것으로 기대하였다. 본 연구진은 니켈이 NCM 양극물질 합성용 내화갑으로서의 가능성을 확인하고자 하였다. 900℃에서 Ni 금속 도가니와 Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) 전구체 물질을 장시간 반응시켰을 때, 시간 변화에 따른 도가니 표면 반응층 변화를 분석하였다. 900℃에서 열처리 동안에 형성된 니켈 도가니 반응층은 니켈 산화물이었으며, 양극 전구체 산화물로 부터의 산소확산과 대기 중의 산소와 반응이 동시에 이루어져서 생성된 것으로 생각된다. 산화층은 480시간 이후로 그 두께의 변화가 느려지는 것으로 보아 전구체로 부터의 산소 확산속도가 감소되는 것으로 생각된다. 480시간까지는 도가니로 부터 탈락되지 않고 결합되어 있었다. 그러나 720시간 후에는 산화층이 탈락되는 것이 확인되어 일정 시간까지만 NCM 합성용 Saggar로서 사용 가능할 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 산업자원통상부 소재부품기술개발사업(과제명: High-Ni 계 이차전지 양극재 제조용 리튬 고내식성 내화세라믹 부품 제조기술 개발, 과제번호 20024235, 과제고유번호 1415187563)의 지원을 받았습니다.

References

  1. H.J. Kim, H.T. Kim and S.S. Ryu, "Sagger for synthesizing positive electrode active material of secondary battery and manufacturing method of the same", Korea Patent Application No. 1020120038227, Application Date 20120413, Registration Date 20131023. 
  2. U.S. Kim, J.H. Kim, K.S. Han, J.H. Choi and K.T. Hwang, "Sagger for synthesizing cathode active material of secondary battery, its manufacturing method, and glaze for it", Korea Patent Application No. 1020230101393, Application Date 20230803. 
  3. J.H. Kim, D.S. Kim, S.U. Choi and J.H. Kim, "Sagger for synthesizing electrode active material of secondary battery", Korea Patent Application No. 1020180125034, Application Date 20181019, Registration Date 20200113. 
  4. J.H. Kim and I.K. Hwang, "Co-precipitation reactor for composing a big concentrat gradient precurs and this method", Korea Patent Application No. 1020160171847, Application Date 20161215, Registration Date 20181112. 
  5. K.P. Hong and S.S. Kim, "Reuse method of sagger for manufacturing positive electrode active material and sagger using same", Korea Patent Application No. 1020210181050, Application Date 20211216. 
  6. J.L. White, F.S. Gittleson, M. Homer and F. El Gabaly, "Nickel and cobalt oxidation state evolution at Ni-rich NMC cathode surfaces during treatment", J. Phys. Chem. C 124 (2020) 16508. 
  7. W.L. Phillips Jr., "Oxidation rates of pure and less pure nickel", J. Electrochem. Soc. 110 (1963) 1015. 
  8. Y. Unutulmazsoy, R. Merkle, D. Fischer, J. Mannhart and J. Maier, "The oxidation kinetics of thin nickel films between 250 and 500℃", Phys. Chem. Chem. Phys. 19 (2017) 9045. 
  9. R. Haugsrud, "On the high-temperature oxidation of nickel", Corrosion Science 45 (2003) 211. 
  10. J.S. Cho and D.H. KIm, "Formation of TiNi intermetallics by a diffusion reaction at Ti/Ni multi-layer interface", J. of the Korean Inst. of Met. & Mater. 35 (1997) 1439.