• Title/Summary/Keyword: crystal growth

Search Result 3,201, Processing Time 0.031 seconds

Mineral chemistry and major element geochemistry of the granitic rocks in the Cheongsan area (청산 일대에 분포하는 화강암류의 광물조성과 주성분원소 지구화학)

  • 사공희;좌용주
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.185-209
    • /
    • 1997
  • Granitic rocks in the Cheongsan area cosist of three plutons-Baegrog granodiorite, Cheongsan porphyritic granite, and two mica granite. Amphilboles from the Baegrog granodiorite belong to the calcic amphilbole group and show compositional variations from magnesio-hornblende in the core to actinolitic hornblende in the rim. Biotites from the three granites represent intermediate compositions between phlogopite and annite. Muscovites from the two mica granite are considered to be primary muscovite in terms of the occurrence and mineral chemistry. Each granitic rock reveals systematic variation of major oxide contents with $SiO_2$. Major oxide variation trends of the Baegrog granodiorite are fairly different from those of Cheongsan porphyritic granite and two mica granite. The latter two granitic rocks are also different with each other in variation trends for some oxides. Thus three granitic rocks in the Cheongsan area were solidifield from the independent magmas of chemically different, heterogeneous origin. The granitic rocks in the area show calc-alkaline nature. The whole rock geochemistry shows that the Baegrog granodiorite and Cheongsan porphyritic granite belong to metaluminous, I-type granite, whereas the two mica granite to peraluminous, I/S-type granite. The opaque mineral contents and magnetic susceptibility represent that the granitic rocks in the area are ilmenite-series granite, indicating that each magma was solidified under relatively reducing environment. The tectonic environment of the granitic activity in the area seems to have been active continental margin. Alkali feldspar megacryst in the Cheongsan porphyritic granite is considered to be magmatic, judging from the crystal size, shape, arrangement, and distribution pattern of inclusions. The petro-graphical characteristics of the Cheongsan porphyritic granite can be explained by two stage crystallization. Under the smaller degree of undercooling the alkali feldspar megacrysts rapidly grew owing to slow rate of nucleation and fast growth rate. At the larger degree of undercooling the nucleation rate and density drastically increased and the small crystals of the matrix were formed.

  • PDF

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

Comparative Study of Toxic Effects of Anatase and Rutile Type Nanosized Titanium Dioxide Particles in vivo and in vitro

  • Numano, Takamasa;Xu, Jiegou;Futakuchi, Mitsuru;Fukamachi, Katsumi;Alexander, David B.;Furukawa, Fumio;Kanno, Jun;Hirose, Akihiko;Tsuda, Hiroyuki;Suzui, Masumi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.929-935
    • /
    • 2014
  • Two types of nanosized titanium dioxide, anatase ($anTiO_2$) and rutile ($rnTiO_2$), are widely used in industry, commercial products and biosystems. $TiO_2$ has been evaluated as a Group 2B carcinogen. Previous reports indicated that $anTiO_2$ is less toxic than $rnTiO_2$, however, under ultraviolet irradiation $anTiO_2$ is more toxic than $rnTiO_2$ in vitro because of differences in their crystal structures. In the present study, we compared the in vivo and in vitro toxic effects induced by $anTiO_2$ and $rnTiO_2$. Female SD rats were treated with $500{\mu}g/ml$ of $anTiO_2$ or $rnTiO_2$ suspensions by intra-pulmonary spraying 8 times over a two week period. In the lung, treatment with $anTiO_2$ or $rnTiO_2$ increased alveolar macrophage numbers and levels of 8-hydroxydeoxyguanosine (8-OHdG); these increases tended to be lower in the $anTiO_2$ treated group compared to the $rnTiO_2$ treated group. Expression of $MIP1{\alpha}$ mRNA and protein in lung tissues treated with $anTiO_2$ and $rnTiO_2$ was also significantly up-regulated, with $MIP1{\alpha}$ mRNA and protein expression significantly lower in the $anTiO_2$ group than in the $rnTiO_2$ group. In cell culture of primary alveolar macrophages (PAM) treated with $anTiO_2$ and $rnTiO_2$, expression of $MIP1{\alpha}$ mRNA in the PAM and protein in the culture media was significantly higher than in control cultures. Similarly to the in vivo results, $MIP1{\alpha}$ mRNA and protein expression was significantly lower in the $anTiO_2$ treated cultures compared to the $rnTiO_2$ treated cultures. Furthermore, conditioned cell culture media from PAM cultures treated with $anTiO_2$ had less effect on A549 cell proliferation compared to conditioned media from cultures treated with $rnTiO_2$. However, no significant difference was found in the toxicological effects on cell viability of ultra violet irradiated $anTiO_2$ and $rnTiO_2$. In conclusion, our results indicate that $anTiO_2$ is less potent in induction of alveolar macrophage infiltration, 8-OHdG and $MIP1{\alpha}$ expression in the lung, and growth stimulation of A549 cells in vitro than $rnTiO_2$.

Carbonate Biomineralization Using Speleothems and Sediments from Baekasan Acheon Cave (Limestone Cave) in Hwasun-gun, Jeollanam-do, South Korea (전남 화순군 백아산 아천동굴(석회동굴) 동굴생성물을 이용한 생광물화작용 연구)

  • Kim, Yumi;Seo, Hyunhee;Jo, Kyoung-nam;Jung, Dayae;Shin, Seungwon;Huh, Min;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • Baekasan Acheon cave located in Hwasun-gun, Jeollanam-do is a natural limestone cave only found in this province. In this study, the mineralogical and geochemical characteristics of speleothems collected from Baekasan Acheon cave were identified and the capability of carbonate mineral formation by aerobic microorganisms enriched from the cave and the mineralogical and geochemical characteristics of carbonate minerals formed by the microorganisms were investigated. The samples of sediments (clay) and speleothems (shelfstone and cave coral) were collected at three sites in the cave. The samples of shelfstone and cave coral were identified mainly as carbonate mineral, Mg-rich calcite, and clay minerals were composed of quartz, muscovite, and vermiculite by X-ray diffraction (XRD) analysis. To cultivate the carbonate forming microorganisms, parts of the sediment and speleothems were placed in D-1 medium containing urea, respectively, and the growth of microorganisms was observed under the aerobic condition at room temperature. The capability of carbonate mineralization of the cultured Baekasan Acheon cave microorganisms was examined through adding 1% (v/v) of the cultured microorganisms and calcium sources, Ca-acetate or Ca-lactate, into the D-1 medium. XRD analysis showed that the microorganisms cultured in cave deposits formed calcium carbonate ($CaCO_3$) under all conditions, and these microbial carbonate minerals included calcite and vaterite. The morphological characteristics and chemical composition of biologically formed minerals were observed by SEM-EDS showed various crystal forms such as rhomboid, spherical, perforated surface with Ca, C, and O of major chemical components. The existence of such microorganisms in the cave can contribute the formation of carbonate minerals, and it is likely to affect the geochemical cycles of carbon and calcium in the cave.

An Experimental Study of Corrosion Characteristics and Compounds by Corrosion Factors in Iron Artifacts (철제유물 부식인자에 대한 부식양상 및 부식화합물 실험 연구)

  • Park, Hyung Ho;Lee, Jae Sung;Yu, Jae Eun
    • 보존과학연구
    • /
    • s.33
    • /
    • pp.33-43
    • /
    • 2012
  • The corrosion phenomena of the iron artifacts was studied by morphology observation and instrumental analysis(EDS, XRD, Raman) with various corrosion factors in oder to verify to confirm the danger of corrosion factors. Corrosion compounds were collected by depositing pure Fe powder(99%) into a HCl, $HNO_3$, $H_2SO_4$, and $H_2O$ solution which contained the corrosion factors. Stereoscopic-microscope observations were then conducted determine the colors and shapes of the collected corrosion compounds, and SEM-EDS analysis was conducted to confirm the corrosion factors and the growth of these compounds. X-ray diffraction (XRD), Raman analyses were conducted to examine the crystal structure and compositions of the created corrosion compounds. The results of the experiment revealed that corrosion speed was faster in an acidic environment and corrosion of HCl and $H_2SO_4$ was greater than that of $HNO_3$. The corrosion compounds of HCl grew into a needle or chestnut-like shape after being affected by Cl- ion, and XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $H_2SO_4$ was affected by S ion and grew into a slender-needle-like or cylindrical shape, and the XRD and Raman analyses detected goethite and lepidocrocite. The corrosion compounds of $HNO_3$ grew into a spherical or plate-like shape after being affected by O ion and the XRD and Raman analyses detected magnetite and lepidocrocite. Although the corrosion compounds of $H_2O$ grew into a spherical or plate-like shape after being affected by O ion, most of them were observed to have had spherical shapes, and the XRD and Raman analyses failed to detect corrosion compounds in them. It was found in the study that corrosion characteristics and compounds are diversely displayed according to the corrosion factor.

  • PDF

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD (나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구)

  • Park, S.J.;Song, S.O.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.6
    • /
    • pp.538-543
    • /
    • 2008
  • Recently a nano-scale diamond is possible to manufacture forms of powder(below 100 nm) by new processing of explosion or deposition method. Using a sintering of nano-scale diamond is possible to manufacture of grinding tools. We have need of a processing development of coated uniformly inorganic to prevent an abnormal grain growth of nano-crystal and bonding obstacle caused by sintering process. This paper, in order to improve the sintering property of nano-scale diamond, we coated ZnO thin films(thickness: $20{\sim}30\;nm$) in a vacuum by ALD(atomic layer deposition) Economically, in order to deposit ZnO all over the surface of nano-scale diamond powder, we used a new modified fluidized bed processing replaced mechanical vibration effect or fluidized bed reactor which utilized diamond floating owing to pressure of pulse(or purge) processing after inserted diamond powders in quartz tube(L: 20 mm) then closed quartz tube by porosity glass filter. We deposited ZnO thin films by ALD in closed both sides of quartz tube by porosity glass filter by ALD(precursor: DEZn($C_4H_{10}Zn$), reaction gas: $H_2O$) at $10^{\circ}C$(in canister). Processing procedure and injection time of reaction materials set up DEZn pulse-0.1 sec, DEZn purge-20 sec, $H_2O$ pulse-0.1 sec, $H_2O$ purge-40 sec and we put in operation repetitive 100 cycles(1 cycle is 4 steps) We confirmed microstructure of diamond powder and diamond powder doped ZnO thin film by TEM(transmission electron microscope) Through TEM analysis, we confirmed that diamond powder diameter was some $70{\sim}120\;nm$ and shape was tetragonal, hexagonal, etc before ALD. We confirmed that diameter of diamond powders doped ZnO thin film was some $70{\sim}120\;nm$ and uniform ZnO(thickness: $20{\sim}30\;nm$) thin film was successfully deposited on diamond powder surface according to brightness difference between diamond powder and ZnO.

Gahnite-Sillimanite-Garnet Mineral Assemblage from the Host Rocks of the Cannington Deposit, North Queensland, Australia: Relationship between Metamorphism and Zn-Mineralization (호주 퀸즈랜드 주 캔닝턴 광상 모암의 아연-첨정석-규선석-석류석에 관한 연구 :변성작용과 아연-광화작용에 대해서)

  • Kim Hyeong Soo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.309-325
    • /
    • 2004
  • The Cannington Ag-Pb-Zn deposit, northwest Queensland, Australia developed around the host rocks composing banded and migmatitic gneisses, sillimanite-garnet schist and amphibolite. Three crystal habits of sillimanite, gahnite (Zn-spinel) and garnet porphyroblasts occurred on the host rocks of the Cannington deposit could be used to delineate metamorphism that closely associated with Zn-mineralization in the deposit. Linkages the metamorphism to Zinc-mineralization is determined in four chemical systems, KFMASH (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$), KFMASHTO (K$_2$O-FeO-MgO-Al$_2$O$_3$-SiO$_2$-$H_2O$-TiO$_2$-Fe$_2$O$_3$), NCKFMASH (Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$) and MnNCK-FMASH (MnO-Na$_2$O-CaO-K$_2$O-FeO-MgO-AlO$_3$-SiO$_2$-$H_2O$), using THERMOCALC program (version 3.1; Powell and Holland 1988). Partial melting in MnNCKFMASH and NCKFMASH systems occurs at lower temperature than in the KFMASH and KFMASHTO systems. The partial melting temperature decreases with increasing of Na/(Na+Ca+K) of the bulk rock compositions in the MnNCKFMASH system. The host rocks have melted ca 15 vol.% in the MnNCKFMASH system at peak metamorphic conditions (634$\pm$62$^{\circ}C$ and 4.8$\pm$1.3 kbar), but partial melting have not occurred in KFMASHTO system. Based on calculations of sillimanite isograd in different systems and sillimanite modal pro-portion, prismatic and rhombic sillimanite and gahnite porphyroblasts including prismatic sillimanite inclusion probably have resulted from pressure and temperature increasing through partial melting (from 550~$600^{\circ}C$, 2.0~3.0 kbar to 700~75$0^{\circ}C$, 5.0~7.0 kbar), furthermore have experienced N-S then W-E crustal shortening during D$_1$ and D$_2$ deformation. Consequently, Zinc mineralization related to gahnite growth occurred during D$_2$ and was redistributed and upgraded by partial melting and retrograde metamorphism into structural and rheological sites during shearing in D$_3$.

International Conference on Electroceramics 2005 (2005년도 국제 전자세라믹 학술회의)

  • 한국세라믹학회
    • Proceedings of the Korean Ceranic Society Conference
    • /
    • 2005.06a
    • /
    • pp.1-112
    • /
    • 2005
  • This report is results of a research on recent R&D trends in electroceramics, mainly focusing on the papers submitted to the organizing committee of the International Conference on Electroceramics 2005 (ICE-2005) which was held at Seoul on 12-15 June 2005. About 380 electroceramics researchers attended at the ICE-2005 from 17 countries including Korea, presenting and discussing their recent results. Therefore, we can easily understand the recent research trends in the field of electroceramics by analyses of the subject and contents of the submitted papers. In addition to the analyses of the papers submitted to the ICE-2005, we also collected some informations about domestic and international research trends to help readers understand this report easily. We analysed the R&D trends on the basis of four main categories, that is, informatics electroceramics, energy and environment ceramics, processing and characterization of electroceramics, and emerging fields of electroceramics. Each main category has several sub-categories again. The informatics ceramics category includes integrated dielectrics and ferroelectrics, oxide and nitride semiconductors, photonic and optoelectronic devices, multilayer electronic ceramics and devices, microwave dielectrics and high frequency devices, and piezoelectric and MEMS applications. The energy and environment ceramics category has four sub-categories, that is, rechargable battery, hydrogen storage, fuel cells, and advanced energy conversion concepts. In the processing and characterization category, there exist domain, strain, and epitaxial dynamics and engineering sub-category, innovative processing and synthesis sub-category, nanostructured materials and nanotechnology sub- category, single crystal growth and characterization sub-category, theory and modeling sub-category. Nanocrystalline electroceramics, electroceramics for smart sensors, and bioceramics sub-categories are included to the emerging fields category. We hope that this report give an opportunity to understand the international research trend, not only to Korean ceramics researchers but also to science and technology policy researchers.

  • PDF