• Title/Summary/Keyword: crystal

Search Result 11,837, Processing Time 0.053 seconds

Direct bonding of Si(100)/Si$_3$N$_4$∥Si (100) wafers using fast linear annealing method (선형열처리를 이용한 Si(100)/Si$_3$N$_4$∥Si (100) 기판쌍의 직접접합)

  • Lee, Young-Min;Song, Oh-Song;Lee, Sang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 2001
  • We prepared 10cm-diameter Si(100)/500 $\AA$-Si$_3$N$_4$/Si(100) wafer Pairs adopting 500 $\AA$ -thick Si$_3$N$_4$layer as insulating layer between single crystal Si wafers. Si3N, is superior to conventional SiO$_2$ in insulating. We premated a p-type(100) Si wafer and 500 $\AA$ -thick LPCVD Si$_3$N$_4$∥Si (100) wafer in a class 100 clean room. The cremated wafers are separated in two groups. One group is treated to have hydrophobic surface and the other to have hydrophilic. We employed a FLA(fast linear annealing) bonder to enhance the bond strength of cremated wafers at the scan velocity of 0.1mm/sec with varying the heat input at the range of 400~1125W. We measured bonded area using a infrared camera and bonding strength by the razor blade crack opening method. We used high resolution transmission electron microscopy(HRTEM) to probe cross sectional view of bonded wafers. The bonded area of two groups was about 75%. The bonding strength of samples which have hydrophobic surface increased with heat input up to 1577mJ/$m^2$ However, bonding strength of samples which have hydrophilic surface was above 2000mJ/$m^2$regardless of heat input. The HRTEM results showed that the hydrophilic samples have about 25 $\AA$ -thick SiO layer between Si and Si$_3$N$_4$/Si and that maybe lead to increase of bonding strength.

  • PDF

Small-Angle X-ray Scattering Station 4C2 BL of Pohang Accelerator Laboratory for Advance in Korean Polymer Science

  • Yoon, Jin-Hwan;Kim, Kwang-Woo;Kim, Je-Han;Heo, Kyu-Young;Jin, Kyeong-Sik;Jin, Sang-Woo;Shin, Tae-Joo;Lee, Byeong-Du;Rho, Ye-Cheol;Ahn, Byung-Cheol;Ree, Moon-Hor
    • Macromolecular Research
    • /
    • v.16 no.7
    • /
    • pp.575-585
    • /
    • 2008
  • There are two beamlines (BLs), 4C1 and 4C2, at the Pohang Accelerator Laboratory that are dedicated to small angle X-ray scattering (SAXS). The 4C1 BL was constructed in early 2000 and is open to public users, including both domestic and foreign researchers. In 2003, construction of the second SAXS BL, 4C2, was complete and commissioning and user support were started. The 4C2 BL uses the same bending magnet as its light source as the 4C1 BL. The 4C1 BL uses a synthetic double multilayer monochromator, whereas the 4C2 BL uses a Si(111) double crystal monochromator for both small angle and wide angle X-ray scattering. In the 4C2 BL, the collimating mirror is positioned behind the monochromator in order to enhance the beam flux and energy resolution. A toroidal focusing mirror is positioned in front of the monochromator to increase the beam flux and eliminate higher harmonics. The 4C2 BL also contains a digital cooled charge coupled detector, which has a wide dynamic range and good sensitivity to weak scattering, thereby making it suitable for a range of SAXS and wide angle X-ray scattering experiments. The general performance of the 4C2 BL was initially tested using standard samples and further confirmed by the experience of users during three years of operation. In addition, several grazing incidence X-ray scattering measurements were carried out at the 4C2 BL.

Assessment of Bio-corrosive Effect and Determination of Controlling Targets among Microflora for Application of Multi-functional CFB on Cement Structure (다기능 탄산칼슘 형성세균의 시멘트 건축물 적용위한 부식능 평가 및 건축물 정주미생물 중 방제 대상 결정)

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Life Science
    • /
    • v.25 no.2
    • /
    • pp.237-242
    • /
    • 2015
  • The use of calcite-forming bacteria (CFB) in crack remediation and durability improvements in construction materials creates a permanent and environmentally-friendly material. Therefore, research into this type of application is stimulating interdisciplinary studies between microbiology and architectural engineering. However, the mechanisms giving rise to these materials are dependent on calcite precipitation by the metabolism of the CFB, which raises concerns about possible hazards to cement-based construction due to microbial metabolic acid production. The aim of this study was to determine target microorganisms that possibly can have bio-corrosive effects on cement mortar and to assess multi-functional CFBs for their safe application to cement structures. The chalky test was first used to evaluate the $CaCO_3$ solubilization feature of construction sites by fungi, yeast, bacterial strains. Not all bacterial strains are able to solubilize $CaCO_3$, but C. sphaerospermum KNUC253 or P. prolifica KNUC263 showed $CaCO_3$ solubilization activity. Therefore, these two strains were identified as target microorganisms that require control in cement structures. The registered patented strains Bacillus aryabhatti KNUC205, Arthrobacter nicotianae KNUC2100, B. thuringiensis KNUC2103 and Stenotrophomonas maltophilia KNUC2106, reported as multifunctional CFB (fungal growth inhibition, crack remediation, and water permeability reduction of cement surfaces) and isolated from Dokdo or construction site were unable to solubilize $CaCO_3$. Notably, B. aryabhatti KNUC205 and A. nicotianae KNUC2100 could not hydrolyze cellulose or protein, which can be the major constituent macromolecules of internal materials for buildings. These results show that several reported multi-functional CFB can be applied to cement structures or diverse building environments without corrosive or bio-deteriorative risks.

Preparation of TiCoxFe1-x(x=0.50~1.00) System Metal Membrane for Hydrogen Separation (수소분리용 TiCoxFe1-x(x=0.50~1.00)계 금속막 제조)

  • Jang, Kyu-young;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.191-201
    • /
    • 2015
  • We have studied on the preparation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy, the characteristics of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloy by X-ray diffractometer (XRD), pressure composition temperature (PCT) curve, scanning electron microscopy (SEM) and the $H_2-N_2$ gas mixture separation of $TiCo_xFe_{1-x}$(x=0.50~1.00)- stainless steel (SS) composite membranes. The formation of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys with cubic crystal same as TiCo was confirmed by X-ray diffractometer. $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys showed the hysteresis at $120^{\circ}C$. As the Fe content of $TiCo_xFe_{1-x}$(x=0.50~1.00) system alloys increased, the hysteresis was increased both range x=0.90~1.00 and x=0.55~0.60, and the range x=0.55~0.90 gave decreased hysteresis. $TiCo_{0.55}Fe_{0.45}$ alloy was the one showed the lowest hysteresis among them. The lowest value of hydrogen permeation pressure of $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membrane was $TiCo_{0.55}Fe_{0.45}$-SS composite membrane with the value of 2.5 atm at $120^{\circ}C$; otherwise, $TiCo_{0.90}Fe_{0.10}$-SS composite had the highest pressure value among the membranes with the value of 10 atm. $TiCo_{0.55}Fe_{0.45}$-SS composite membrane was the best to separate the $H_2-N_2$ gas mixture excellently among the $TiCo_xFe_{1-x}$(x=0.50~1.00)-SS composite membranes since $TiCo_{0.55}Fe_{0.45}$ had the least hysteresis, and hydrogen permeation pressure was the lowest with value of 2.5 atm.

Comparative Assessment on Indicating Factor for Biomineralization by Bacillus Species (Bacillus종의 생광물화에 미치는 영향 인자의 비교 평가)

  • Seok, Hee-Jeong;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.3
    • /
    • pp.179-191
    • /
    • 2013
  • This study was conducted to comparatively assess quantitative indicating factor for biomineralization characterizing $CO_2$ mineralization on three type of minerals (i.e., $CaCl_2$, $MgCl_2$, $CaCl_2-MgCl_2$) in an aqueous solution amended with Bacillus pasteurii or indigenous microorganisms for a S landfill cover soil. For given three types of minerals, $NH_4{^+}$ (urease activity) was released at the highest of 88 mg/L for $MgCl_2$, then 85 mg/L for $CaCl_2$, and the lowest of 42 mg/L for $CaCl_2-MgCl_2$. $CO_2$ gas in the head space was completely removed after 12, 12, and 24 hr for $CaCl_2$, $MgCl_2$ and $CaCl_2-MgCl_2$, respectively. $Ca^{2+}$ concentration in $CaCl_2$ solution was the quickest and the greatest decreased 92% for 12 hr whereas that in $CaCl_2-MgCl_2$ solution was lower at 85% for 36 hr. $Mg^{2+}$ concentration in $MgCl_2$ was more efficiently decreased at 46% for 48 hr than that of $CaCl_2-MgCl_2$ solution of 38.5% for 72 hr. Regardless of types of minerals or their concentration, pH was changed from 5.5 to 9 by biomineralization being progressed. Microbial activity ($OD_{600}$) was also changed from 0 to 0.6. SEM images indicated that spheroidal and trapezoid shape crystal were formed, which were identified as of $CaCO_3$ (Calcite) and $MgCO_3$ (Magnesite) by X-ray diffraction. In the long run, $NH_4{^+}$ (urease activity), $CO_2$ gas, $OD_{600}$, pH, $Ca^{2+}$ and $Mg^{2+}$ would be suitable for reasonable indicating factor in order to assess the degree of biomineralization efficiency.

Synthesis and Structural Characterization of Optically Active Bis(L-Prolinato)(2,2'-bipyridine)Co(Ⅲ) and Bis(L-Prolinato)(1,10-phenanthroline)Co(Ⅲ) (광학활성 비스(L-Prolinato)(2,2'-bipyridine)코발트(Ⅲ)와 비스(L-Prolinato)(1,10-phenanthroline)코발트(Ⅲ)의 합성과 구조적인 특성)

  • Oh, Chang Eon;Kim, Bok Jo;Yoon, Doo Cheon;Doh, Myung Ki;Heo, Nam Ho
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.9
    • /
    • pp.715-721
    • /
    • 1995
  • Reaction between trans-$[Co(py)_4/Ci_2]^+(py=pyridine)$ and L-proline and diimine (=2,2'-bipyridine, 1,10-phenanthroline) gives two products, $[Co(L-pro)_2/(bipy)]^+$ and $[Co(L-pro)_2(phen)]^+$ complexes, respectively. On column chromatography, $[Co(L-pro)_2(bipy)]^+$ was obtained only as $Lambda$-trans(N) and $[Co(L-pro)_2(phen)]^+$ was obtained both as ${\Delta}$-trans(N) and $Lambda$-cis(O)cis(N) due to the stereoselectivity of L-prolinato which was stereospecific. Crystal data are as follows: $Lambda$-trans(N)-$[Co(L-pro)_2(bipy)]CIO_4{\cdot}2H_2O$ (1): monoclinic, space group $P2_1(#4)$, a=9.807(3), b=10.421(1), c=12.778(2) ${\AA}$, ${\beta}=109.90(2)^{\circ}$, V=1227.8(5) ${\AA}^3$, Z=2; 1571 data with I > 3.0${\sigma}$(I) were refined to R=0.060, $R_W = 0.067$; ${\Delta}$-trans(N)-$[Co(L-pro)_2(phen)]Cl{\cdot}_3H_2O$(2): monoclinic, space group $P2_1(#4)$, a=9.838(2), b=12.892(2), c=10.747(2)${\AA}$, ${\beta}=113.79(2)^{\circ}$, V=1247.2(4) ${\AA}^3$, Z=2; 2433 data with I > 3.0${\sigma}$(I) were refined to R=0.043, $R_W = 0.050$.

  • PDF

A bilayer diffusion barrier of atomic layer deposited (ALD)-Ru/ALD-TaCN for direct plating of Cu

  • Kim, Soo-Hyun;Yim, Sung-Soo;Lee, Do-Joong;Kim, Ki-Su;Kim, Hyun-Mi;Kim, Ki-Bum;Sohn, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.239-240
    • /
    • 2008
  • As semiconductor devices are scaled down for better performance and more functionality, the Cu-based interconnects suffer from the increase of the resistivity of the Cu wires. The resistivity increase, which is attributed to the electron scattering from grain boundaries and interfaces, needs to be addressed in order to further scale down semiconductor devices [1]. The increase in the resistivity of the interconnect can be alleviated by increasing the grain size of electroplating (EP)-Cu or by modifying the Cu surface [1]. Another possible solution is to maximize the portion of the EP-Cu volume in the vias or damascene structures with the conformal diffusion barrier and seed layer by optimizing their deposition processes during Cu interconnect fabrication, which are currently ionized physical vapor deposition (IPVD)-based Ta/TaN bilayer and IPVD-Cu, respectively. The use of in-situ etching, during IPVD of the barrier or the seed layer, has been effective in enlarging the trench volume where the Cu is filled, resulting in improved reliability and performance of the Cu-based interconnect. However, the application of IPVD technology is expected to be limited eventually because of poor sidewall step coverage and the narrow top part of the damascene structures. Recently, Ru has been suggested as a diffusion barrier that is compatible with the direct plating of Cu [2-3]. A single-layer diffusion barrier for the direct plating of Cu is desirable to optimize the resistance of the Cu interconnects because it eliminates the Cu-seed layer. However, previous studies have shown that the Ru by itself is not a suitable diffusion barrier for Cu metallization [4-6]. Thus, the diffusion barrier performance of the Ru film should be improved in order for it to be successfully incorporated as a seed layer/barrier layer for the direct plating of Cu. The improvement of its barrier performance, by modifying the Ru microstructure from columnar to amorphous (by incorporating the N into Ru during PVD), has been previously reported [7]. Another approach for improving the barrier performance of the Ru film is to use Ru as a just seed layer and combine it with superior materials to function as a diffusion barrier against the Cu. A RulTaN bilayer prepared by PVD has recently been suggested as a seed layer/diffusion barrier for Cu. This bilayer was stable between the Cu and Si after annealing at $700^{\circ}C$ for I min [8]. Although these reports dealt with the possible applications of Ru for Cu metallization, cases where the Ru film was prepared by atomic layer deposition (ALD) have not been identified. These are important because of ALD's excellent conformality. In this study, a bilayer diffusion barrier of Ru/TaCN prepared by ALD was investigated. As the addition of the third element into the transition metal nitride disrupts the crystal lattice and leads to the formation of a stable ternary amorphous material, as indicated by Nicolet [9], ALD-TaCN is expected to improve the diffusion barrier performance of the ALD-Ru against Cu. Ru was deposited by a sequential supply of bis(ethylcyclopentadienyl)ruthenium [Ru$(EtCp)_2$] and $NH_3$plasma and TaCN by a sequential supply of $(NEt_2)_3Ta=Nbu^t$ (tert-butylimido-trisdiethylamido-tantalum, TBTDET) and $H_2$ plasma. Sheet resistance measurements, X-ray diffractometry (XRD), and Auger electron spectroscopy (AES) analysis showed that the bilayer diffusion barriers of ALD-Ru (12 nm)/ALD-TaCN (2 nm) and ALD-Ru (4nm)/ALD-TaCN (2 nm) prevented the Cu diffusion up to annealing temperatures of 600 and $550^{\circ}C$ for 30 min, respectively. This is found to be due to the excellent diffusion barrier performance of the ALD-TaCN film against the Cu, due to it having an amorphous structure. A 5-nm-thick ALD-TaCN film was even stable up to annealing at $650^{\circ}C$ between Cu and Si. Transmission electron microscopy (TEM) investigation combined with energy dispersive spectroscopy (EDS) analysis revealed that the ALD-Ru/ALD-TaCN diffusion barrier failed by the Cu diffusion through the bilayer into the Si substrate. This is due to the ALD-TaCN interlayer preventing the interfacial reaction between the Ru and Si.

  • PDF

Factors Affecting the Property of $CaCO_3$Precipitated from $CaCl_2-Na_2CO_3-H_2O$ System ($CaCl_2-Na_2CO_3-H_2O$ 반응계에서 침강성탄산칼슘의 성상에 영향을 주는 인자에 관하여)

  • Song, Young-Jun;Park, Charn-Hoon;Cho, Dong-Sung
    • Resources Recycling
    • /
    • v.5 no.4
    • /
    • pp.32-41
    • /
    • 1996
  • The objective of this study was to investigate the facton affecting the property of CaCO, farmed from CaClz-Na,CO,-HiOsystem. The effcct of the concentmtlon of reaclants, impurity, the pH of reaction, the addition of sccd crystal, and injectingvelocity af reaclant solution an thc yield oI CaCO; polymorphs. parlide size and whiteness of CaCO, were investigated. Thcmqor resulls are ;o fallows; I The optimum concentratinn of reildilnts for forming vaterlte and aragonite is the range of 0.1-1.0 mol/l, when the yicld of vittcrite and araga~nles howed 7542% and XU-90%. respedively. 2. Among thc composition of impunticscontained h limestone, Fe' decrease the wh~tcness nf CaCO;. md Mg" increase the yield of aragonite. 3. The pHrange of vaterite and aragonite are formed with high yield is 8-11, and Calcite is famed in pH 6-8 with big particle size of 1over and in pH 11-13 with small particle size of I under. 4. The yicld of calcite and aragonite was increased by addingthc seed cryst.al nf itself.d cryst.al nf itself.

  • PDF

Bioactive Characterization of Bacillus thuriniensis subsp. kurstaki CAB133 Isolated from Domestic Soil (국내 토양으로 분리된 Bacillus thuriniensis subsp. kurstaki CAB133균주의 생물학적 특성)

  • Choi, Su-Yeon;Cho, Min-Su;Kim, Tae-Hwan;Kim, Jin-Su;Pack, Seung-Kyung;Youn, Young-Nam;Hong, Soon-Sung;Yu, Yong-Man
    • Korean journal of applied entomology
    • /
    • v.47 no.2
    • /
    • pp.175-184
    • /
    • 2008
  • To screen highly active Bacillus thuringiensis isolates against Spodoptera litura (Lepidoptera, Noctuidae), 46 B. thuringiensis was isolated from 115 samples obtained from several crop soils. Especially, B. thuringiensis subsp. kurstaki CAB133 and CAB162 isolates showed 100% mortality against S. litura. $LD_{50}$ values of CAB 133, CAB162 and HD-1 strains of B. thuringiensis subsp. kurstaki were 0.089, 3.144 and $0.513{\mu}g/ml$ against 2nd larva of S. litura, respectively. The weight of 3rd larva of S. litura which were fed crystal inclusion protein $(1.267{\mu}g/ml)$ with B. thuringiensis subsp. kurstaki CAB133 was about 30 times lass than control group. CAB133 and CAB 162 strains of B. thuringiensis subsp. kurstaki which were taken a highly toxity against S. litura were analyzed by SDS-PAGE, and estimated the molecular weight of the Cry proteins. Their serological identification by H serotypes were showed B. thuringiensis subsp. kurstaki (3abc) type.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.