• Title/Summary/Keyword: cryogenic treatment

Search Result 54, Processing Time 0.026 seconds

Microstructure and Mechanical Properties of ODS Ferrite Produced by Reactive Milling for the MSR Suppression (MSR (Mechanically induced Self-sustaining Reaction)이 억제된 반응성 밀링에 의해 제조된 분산강화 페라이트의 미세조직과 기계적 특성)

  • Hwang, Seung J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.6
    • /
    • pp.279-287
    • /
    • 2013
  • Oxide Dispersion Strengthened (ODS) Fe with $Al_2O_3$ dispersoid was successfully produced by reactive milling with a mixture of Fe, $Fe_3O_4$ (Magnetite), $Fe_2O_3$ (Hematite) and Al reactants at cryogenic temperature. The milled powders were consolidated by Vacuum Hot Press (HP) at 1323 K, and the consolidated materials were characterized by Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), and Energy Dispersive Spectroscopy (EDS); the yield strength and the hardness of the consolidated materials were determined by compressive test and Vickers hardness test at room temperature. The grain size of the materials was estimated by X-ray Diffraction technique using the scherrer's formula. The TEM observations showed that the microstructure was comprised with a mixture of nanocrystalline Fe matrix and $Al_2O_3$ nano-dispersoids with a bimodal size distribution; the 0.2% off-set yield strength of the materials was as high as $758{\pm}29$ MPa and the Vickers hardness was $358{\pm}2$. The effect of the cryogenic milling and addition of extra Fe powder was discussed on the suppression of MSR (Mechanically induced Self-sustaining Reaction) for the desired microstructural evolution of ODS alloys.

Mechanical Properties of ODS Fe Alloys Produced by Mechano-Chemical Cryogenic Milling (극저온 기계화학적 밀링(Mechano-Chemical Milling)에 의해 제조된 ODS Fe 합금의 기계적 특성)

  • Hahn, Sung-In;Hong, Young-Hwan;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • An ${\alpha}$-Ferrite (Fe) powder dispersed with 4 vol.% of $Al_2O_3$ was successfully produced by a simple miling at 210 K with a mixture of $Fe_2O_3$, Fe and Al ingredient powders, followed by 2 step high temperature consolidation: Hot Pressing (HP) at 1323 K and then Hot Isostatic Pressing at 1423 K. The microstructure of the consolidated material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEM-EDS analysis showed that the HIPed materials comprised a mixture of pure Fe matrix with a grain size of ~20 nm and $Al_2O_3$ with a bimodal size distribution of extremely fine (~5 nm) and medium size dispersoids (~20 nm). The mechanical properties of the consolidated materials were characterized by compressive test and micro Vickers hardness test at room temperature. The results showed that the yield strength of the ODS (Oxide Dispersion Strengthened) Fe alloy are as much as $674{\pm}39$ MPa and the improvement of the yield strength is attributed to the presence of the fine $Al_2O_3$ dispersoid.

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

Effect of Surface Treatment on Adhesive Bonding Strengh of Composite Material for Cryogenic Application (극저온용 복합재료의 접착부 강도에 미치는 표면처리 효과에 대한 연구)

  • Ahn, Myoung-Ho;So, Yong-Shin;Park, Dong-Hwan
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.28-28
    • /
    • 2010
  • The secondary barrier of cargo containment for membrane LNG tank is composed of composite materials such as rigid triplex (rigid secondary barrier, RSB) and flexible triplex (flexible secondary barrier, FSB). RSB and FSB are adhered to each other using an epoxy adherent and the quality of the secondary barrier depends on the bonding strength between them. The bonding strength between RSB and FSB is greatly influenced by the surface condition of RSB prior to joining. In this study, the effect of surface condition prior to joining on the joint strength and the fracture mode occurred between RSB and FSB have been examined in order to establish a proper surface treatment method for improving the bonding strength at the temperature of $-170^{\circ}C$.

  • PDF

R&D on Thermal, Fluid, and Environmental Engineering Technology in KIMM (한국기계연구원의 열유체환경기술 개발현황)

  • Kim, Seock-Joan
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.17-24
    • /
    • 2001
  • To solve the problems of energy and environment conservation issued recently, mainly in mechanical engineering point of view, R&D's on the thermal, fluid and environmental engineering technology have been carried out by two R&D departments in the Korea Institute of Machinery & Materials (KIMM). Now there are 65 researchers in the two. The representative projects in the field of thermal and fluid engineering are development of an inactive gas generator and development of a cryogenic cooler for electronic sensors. Pyrolysis and melting of wastes, gas treatment using nonthermal plasma, and desalination are important technology to be developed in environmental R&D areas. To reduce the emission from the existing diesel engines for buses, an LPG direct injection type of bus engine is being developed supported by LPG supply companies. These several R&D projects which have been carried out in KIMM are introduced briefly.

  • PDF

A Study on the Degradation of Mechanical Properties in High Nitrogen Steel Following Heat Treatments and Welding (고질소계 강의 열처리재 및 용접부의 기계적성질 저하에 관한 연구)

  • 권일현;윤재영;정세희
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.121-128
    • /
    • 1998
  • The degradation of mechanical properties in the high nitrogen steel HN3 developed for nuclear fusion reactor has been evaluated quantitatively using the small punch(SP) test, X-ray diffraction (XRD) analysis has also been conducted to identify carbides or nitrides precipitated on grain boundaries of the heat treated samples. Mechanical properties of the steel HN3 significantly decreased with increasing heat treatment time and temperature or with decreasing testing temperature. Combination of XRD and metallurgical observation, revealed that the material degradation in the thermally aged steel was caused by precipitation of carbides on the grain boundaries. While the weld metal showed the lowest mechanical properties among various microstructures in GTA weldments. By combining SP test and XRD analysis, cryogenic fracture behaviors and aging degradation for high nitrogen steel could be successfully evaluated in nondestructive manner.

  • PDF

Analytical comparison of structural changes of plastic cell-based therapeutic drug storage containers when exposed to cryogenic environments (플라스틱 세포치료제 보관용기의 극저온 환경 노출 시 구조적 변화에 대한 해석적 비교)

  • Park, Jeong-Yeon;Lee, Dong-Mok;Lee, Jienny;Lee, Sun-ray;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, research and commercialization related to the field of cell-based therapeutic drug development has been actively conducted. In order to maintain cell viability and prevent contamination, refrigeration preservation devices, such as CRF (controlled rate freezer) or vapor type LN2 tanks have been developed. On the other hand, the storage container for liquid nitrogen tanks currently on sale minimizes the flow structure to prevent structural defects when stored in a liquid nitrogen tank having a high thermal conductivity than vapor nitrogen. If the cell-based treatment drug is stored in the gaseous LN2 tank as it is, the cell survival after thawing is greatly reduced. It was estimated that the existing storage container structure was a factor that prevented the rapid entry and circulation of gaseous nitrogen into the container. Therefore, this study intends to propose a new supercellular storage container model that can maintain the mechanical strength while maximizing the fluid flow structure. To this end, we estimated that the structural change of the storage container effects on the equivalent stress formed around the through-holes of them when exposed to a cryogenic environment using thermal-structural coupled field analysis. As a result of storage experiments in the gas phase tank of the cell-based therapeutic agent using the developed storage container, it was confirmed that the cell growth rate was improved from 66% to 77%, which satisfied the transportation standards of the FDA(Food and Drug Administration) cell-based therapeutic agent.

Conceptual Design of 100 MWe Oxy-coal Power Plant-Youngdong Project (100 MWe 순산소 석탄연소 발전시스템의 개념설계-영동 프로젝트)

  • Choi, Sangmin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.30-45
    • /
    • 2012
  • An existing unit of power plant is considered to refurbish it for possible application of carbon capture and storage(CCS). Conceptual design of the plant includes basic considerations on the national and international situation of energy use, environmental concerns, required budget, and time schedule as well as the engineering concept of the plant. While major equipment of the recently upgraded power plant is going to be reused, a new boiler for air-oxy fired dual mode operation is to be designed. Cryogenic air separation unit is considered for optimized capacity, and combustion system accommodates flue gas recirculation with multiple cleaning and humidity removal units. The flue gas is purified for carbon dioxide separation and treatment. This paper presents the background of the project, participants, and industrial background. Proposed concept of the plant operation is discussed for the possible considerations on the engineering designs.

Concentration level of Volitile Organic Compounds about the Air of Source Boundary Site in Seongseo Industrial Complex (대구성서산업단지 발생원부지경계 대기 중 휘발성유기화합물질의 농도수준)

  • An Sang-Young;Choi Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The concentrations of volatile organic compounds(VOCs) in the ambient air were measured at various point(Source, source boundary) in Seongseo industrial complex during May to November 2003. Air samples were collected in Silcocan canister $(1{\ell},\;6{\ell})$ and analyzed using a cryogenic preconcentration system and GC/MSD. We identified 37 species by the US EPA(TO-14 method). The result showed a variety distribution of the con­centration, Higher concentrations of BTX, Styrene, 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene were observed at the sampling sites. They seemed to be emitted from the facility of wastewater treatment, reaction tank of chemistry factory and facility of Tenter. The concentrations of VOCs contents in Seongseo industrial complex were generally higher than those in Yeosu complex and Ulsan complex, although those were similar in Sihwa­Banwol complex.

Effects of plasma treatment on gas permeability and selectivity of 6FDA-p-TeMPD membrane (6FDA-p-TeMPD membrane의 불소화합물 plasma처리에 의한 투과특성의 변화)

  • 김태욱;남세종
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1995.10a
    • /
    • pp.49-50
    • /
    • 1995
  • 고분자분리막을 이용한 기체 혼합물의 분리방법은 심냉법(cryogenic process), 가압기체흡착법(Pressure adsorption)과 더불어 상업적으로 중요한 기체분리공정으로 부각되고 있다. 특히 고분자막 중 Polyimide 막은 열적, 화학적으로 안정하고 기체에 대한 선택성이 높으며 기계적 성질이 뛰어나 좋은 막소재로 알려져 있다. 그러나 투과도와 선택도사이에 일반적으로 Trade-off 현상이 있어서 투과도와 선택도를 동시에 향상 하려는 연구가 수행중에 있다. 본 연구에서는 높은 산소투과도를 갖는다고 보고된 6FDA-p-TeMPD막에 hexafluoropropene (HEP)으로 Plasma polymerization을 시키거나 CF$_4$, Ar기체가 플라즈마처리하여 투과특성을 개선시키고 이를 비교 고찰하였다.

  • PDF