• Title/Summary/Keyword: cryogenic test

Search Result 262, Processing Time 0.027 seconds

Assessment for Static and Fatigue Strength of the Aluminum Alloy for LNG Ship (LNG 선박용 알루미늄 합금 소재의 정적 및 피로 강도 평가)

  • Yoon, Yong Keun;Kim, Jae Hoon;Kim, Woo Joong;Baik, Kye Ho;Park, Chang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • Liquefied Natural Gas is liquefied at the condition of atmosphere pressure and cryogenic temperature. LNG is exposed very long time under the cryogenic temperature and high pressure, and it is very important to retain the structural safety in this envelopment. Until now, the material which are composing the storage tank of LNG ship has experimented at room temperature, so it is not enough to apply for the design at the cryogenic temperature. The purposes of this study are investigated mechanical properties for aluminum alloy. To evaluate tensile and fatigue test for aluminum alloy, it was considering static and fatigue conditions at room and cryogenic temperature. S-N curves were designed at both temperature respectively. Also, P-S-N curve was performed statistical method by JSME-S002.

A Study on the Weld Part Fracture Toughness of Austenite Type Stainless Steel for Cryogenic Liquid Nitrogen Storage Tank (초저온 액화질소 저장탱크 오스트나이트계 스테인리스강의 용접부의 파괴인성 연구)

  • Kim, Young-Deuk;Choi, Dong-Jun;Park, Hyung-Wook;Cho, Jong-Rae;Bae, Won-Byoung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.802-808
    • /
    • 2011
  • One of the important mechanical properties of cryogenic temperature structure material is fracture toughness. Research on normalization of fracture toughness test method is becoming very important issue with development of cryogenic structural elements. Specially, mechanical properties estimation by each micro-structure of welding department is important because it can cause unstable fracture when use under cryogenic environment in case of welding department. In this study, fracture toughness estimation test was carried out to unloading compliance method and sensitization heat-tread minimized test specimen at liquid nitrogen (77K), liquid helium (4K), 293K temperature to STS-316L base metal and weld metal.

Development Test of Pyro-Valve for Cryogenic Gaseous Helium in Pressurization System of Launch Vehicle (발사체 가압시스템용 극저온 헬륨가스 파이로밸브 개발시험)

  • Chung, Yong-Gahp;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.293-297
    • /
    • 2009
  • Valves, which are used to supply or block the flow of cryogenic pressurant in the pressurization system of liquid-propellant propulsion system in a launch vehicle, are pneumo-actuated valve, solenoid valve, pyro-valve, etc. Both pneumo-actuated valve and solenoid valve have more complex structure and are heavier than pyro-valve. For this study, a couple of pyro-valves, which are applicable to cryogenic and high-pressure fluid (cryogenic gaseous helium), have a simple structure, and are comparably light, are designed, manufactured, and tested (proof-pressure/leakage tests, performance test, vibration test, helium supply tests).

  • PDF

Mechanical Properties Evaluation of Gas Tungsten Arc Welding for INCONEL 718 alloy apply to Cryogenic Condition (극저온 환경에 적용되는 INCONEL 718합금의 Gas Tungsten Arc Welding 기계적 특성 평가)

  • Kim, Ki-Hong;Moon, In-Sang;Moon, Il-Yoon;Rhee, Byung-Ho
    • Korean Journal of Materials Research
    • /
    • v.19 no.12
    • /
    • pp.692-698
    • /
    • 2009
  • Inconel 718 alloy has excellent mechanical properties at room temperature, high temperature and cryogenic conditions. UTS of base metal is about 900MPa at room temperature; this is increased up to 1300MPa after heat treatment & aging-hardening. Mechanical properties of Inconel 718 Alloy were similar to those shown in the the results for tensile test; mechanical properties of Inconel 718 alloy's GTAW were similar to those of base metal's properties at room temperature. Mechanical properties at cryogenic conditions were better than those at room temperature. Heat-treated Inconel 718, non- filler metal GTAW on Inconel 718 and GTAW used filler metal on Inconel 718's UTS was 1400MPa at cryogenic condition. As a result, the excellent mechanical properties of Inconel 718 alloy under cryogenic conditions was proved through tensile tests under cryogenic conditions. In addition, weldability of Inconel 718 alloy under cryogenic conditions was superior to that of its base-metal. In this case, UTS of hybrid joint (IS-G) at -100$^{\circ}C$ was 900MPa. Consequently, UTS of Inconel 718 alloy is estimated to increase from -100$^{\circ}C$ to a specific temperature below -100$^{\circ}C$. Therefore, Inconel 718 alloy is considered a pertinent material for the production of Lox Pipe under cryogenic conditions.

Warm-up and Cool-down Characteristics of Cryogenic Insulation Materials in Liquid Nitrogen (액체질소에서의 극저온 절연매질의 Warm-up/Cool-down 특성)

  • Lee, Sang-Hwa;Shin, Woo-Ju;Khan, Umer Amir;Oh, Seok-Ho;Sung, Jae-Kyu;Lee, Bang-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.119-119
    • /
    • 2010
  • Among the various factors influencing the service life of the electric equipment, the performance of dielectric insulation materials has an important role to determine their whole service life. In order to determine the degradation of insulating materials immersed in extremely low temperature media such as liquid nitrogen, the abrupt temperature change from cryogenic to normal room temperature should be considered. But the assessments of low-temperature aging test method for the dielectric materials immersed in liquid nitrogen considering these conditions were not fully reported. Therefore, for the fundamental step to establish the suitable degradation test methods for cryogenic dielectric materials, we focused on the evaluation of ageing test methods for dielectric materials exposed to low temperature environments considering thermal shock by cool-down and warm up test.

  • PDF

Tensile Properties of CERP Fabric/Unidirectional Composites under Cryogenic Environment (극저온 환경에서 탄소섬유강화 직조/일방향 복합재료의 인장 물성 측정)

  • 김명곤;김철웅;강상국;김천곤;홍창선
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.115-118
    • /
    • 2003
  • This research aims to measure mechanical tensile properties of CFRP composites for cryogenic tank material. Through the cryogenic chamber, tensile tests are peformed under cryogenic temperature for graphite/epoxy fabric specimen aged at $-150^{\circ}C$ for 30hrs with load and graphite/epoxy unidirectional specimen 3-cycled from RT to $-100^{\circ}C$ with load. For graphite/epoxy fabric specimen, tensile modulus showed to increase after aging at cryogenic temperature(CT) while to decrease after aging at room temperature(RT) and tensile strength is more decreased after CT-aged than at RT-aged. For graphite/epoxy unidirectional specimen, tensile modulus was almost not changed after 3-cycling but strength showed the trend of decrease as increase the number of cycling.

  • PDF

Volumetric Hydrogen Sorbent Measurement at High Pressure and Cryogenic Condition - Basic Measurement Protocols (부피법을 이용한 고압·극저온 수소 흡착량 측정 방식의 기본 원리)

  • OH, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • Volumetric capacity metrics at cryogenic condition are critical for technological and commercial development. It must be calculated and reported in a uniform and consistent manner to allow comparisons among different materials. In this paper, we propose a simple and universal protocol for the determination of volumetric capacity of sorbent materials at cryogenic condition. Usually, the sample container volume containing porous sample at RT can be directly determined by a helium expansion test. At cryogenic temperatures, however, this direct helium expansion test results in inaccurate values of the sample container volume for microporous materials due to a significant helium adsorption, resulting significant errors in hydrogen uptake. For reducing this container volume error, therefore, we introduced and applied the indirect method such as 'volume correction using a non-porous material', showing a reliable cold volume correction.

Effect of Cryogenic Treatment on Wear Resistance of STD 11 Steel (STD 11강 마모특성에 미치는 서브제로처리의 영향)

  • Hong, Young Hwan;Song, Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.134-140
    • /
    • 2003
  • Effects of cryogenic treatment and tempering temperature on the amount of retained austenite, hardness and wear properties has been investigated using alloy tool steel, STD 11. Cryogenic treatments were performed at the temperatures of $-100^{\circ}C$, $-150^{\circ}C$ and $-196^{\circ}C$, and tempering were performed at $200^{\circ}C$ and $530^{\circ}C$. It was shown that lower hardness value was obtained on high temperature ($530^{\circ}C$) tempering even after cryogenic treatment. And retained austenite was not entirely transformed to martensite after cryogenic treatment even at $-196^{\circ}C$, which was not consistent with the belief that $-80^{\circ}C$ was sufficient to entirely transform any austenite retained in the quenched microstructure. Austenite retained in cryogenic treated condition was completely transformed to martensite only after tempering at $530^{\circ}C$. As far as wear test conditions in this investigation, it was found that cryogenic treatments improved the sliding wear resistance, but improvement of wear resistance was not directly related with retained austenite contents. And it was found that predominent wear mechanisms of STD 11 steel were oxidation wear and adhesive wear In sliding wear conditions.

Effects of Cryogenic Treatment on Residual Stress and Tensile Properties for 6061 Al Alloy (극저온 열처리 공정이 6061 알루미늄 합금의 잔류응력과 인장특성에 미치는 영향)

  • Park, Kijung;Ko, Dea Hoon;Kim, Byung Min;Lim, Hak Jin;Lee, Jung Min;Cho, Young-Rae
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • To develop a 6061 aluminum alloy with low residual stress and high tensile strength, a cryogenic treatment process was investigated. Compared to the conventional heat treatment process for precipitation hardening with artificial aging, the cryogenic treatment process has two additional steps. The first step is cryogenic quenching of the sample into liquid nitrogen, the second step is up-hill quenching of the sample into boiling water. The residual stress for the sample was measured by the $sin^2{\psi}$ method with X-ray diffraction. The 6061 aluminum alloy sample showed 67% relief in stress at the cryogenic treatment process with artificial aging at $175^{\circ}C$. From this study, it was found that the optimum cryogenic treatment process for a sample with low residual stress and high tensile strength is relatively low cooling speed in the cryogenic quenching step and a very high heating speed in the up-hill quenching step.

Study on the Temperature Characteristic of Pressurization System Using Cryogenic Helium Gas (극저온 헬륨가스 가압시스템에 대한 온도특성 연구(I))

  • Chung Yonggahp;Kim Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The pressurization system in a liquid rocket propulsion system provides a controlled gas pressure in the ullage space of the vehicle propellant tanks. It is advantage to employ a hot gas heat exchanger in the pressurization system to increase the specific volume of the pressurant and thereby reduce over-all system weight. A significant improvement in pressurization-system performance can be achieved, particularly in a cryogenic system, where the gas supply is stored inside the cryogenic propellant tank. In this study liquid nitrogen was used instead of liquid oxygen as a simulant. The temperature characteristic of cryogenic pressurant is very important to develop some components in pressurization system. Numerical modeling and test data were studied using SINDA/FLUINT Program and PTF(Propellant-feeding Test facility).