• Title/Summary/Keyword: crosslinking.

Search Result 900, Processing Time 0.031 seconds

Preparation and Characterization of Nanoscaled Poly(vinyl alcohol) fibers via Electrospinning

  • Ding, Bin;Kim, Hak-Yong;Lee, Se-Chul;Lee, Douk-Rae;Choi, Kyung-Ju
    • Fibers and Polymers
    • /
    • v.3 no.2
    • /
    • pp.73-79
    • /
    • 2002
  • Nanoscaled PVA fibers were prepared by electrospinning. This paper described the electrospinning process, the processing conditions fiber morphology, and some potential applications of the PVA nato-fibers. PVA fibers with various diameters (50-250 nm) were obtained by changing solution concentration, voltage and tip to collector distance (TCD). The major factor was the concentration of PVA solution which affected the fiber diameter evidently. Increasing the concentration, the fiber diameter was increased, and the amount of beads was reduced even to 0%. The fibers were found be efficiently crosslinked by glyoxal during the curing process. Phosphoric acid was used as a catalyst activator to reduce strength losses during crosslinking. Scanning electron micrograph (SEM) and differential scanning calorimetric (DSC) techniques were employed to characterize the morphology and crosslinking of PVA fibers. It was fecund that the primary factor which affected the crosslinking density was the content of chemical crosslinking agent.

Dependence of Crosslinking Temperature on Swelling Behavior of Hyaluronic Acid Porous Microbeads Synthesized by a Modified Spray Method (노즐 낙하법으로 제조한 히알루론산 다공성 마이크로비드의 가교온도에 따른 팽윤특성)

  • Kim, Young-Hun;Lee, In-Kyu;Kim, Jin-Tae;Park, Ju-Hyun;Lee, Deuk Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.518-522
    • /
    • 2012
  • Hyaluronic acid (HA) microbeads were synthesized by dropping 0.5 wt% of sodium hyaluronate dissolved in NaOH into 0.2 vol% of divinyl sulfone dissolved in 2-methyl-1propanol at a speed of 0.005 ml/min. HA microbeads were collected from a divinyl sulfone crosslinker solution stirred at 200 to 400 rpm for 5 h at temperatures from room temperature to $60^{\circ}C$ at intervals of $10^{\circ}C$. The crosslinked microbeads were then cleaned thoroughly using distilled water and ethanol. SEM results revealed that the microbeads were white-colored spheres. The 3-D porous network structure of the microbeads became dense with an increase in the crosslinking temperature; however, no dependence of the crosslinking temperature on the microbead size was detected. The extent of swelling decreased from 970% to 670% with an increase in the crosslinking temperature from room temperature to $60^{\circ}C$, most likely due to the increase in the degree of crosslinking.

Effect of Crosslinking Agent Structure on Drug Release and Antibacterial Effect of Contact Lenses (교차결합제 구조가 콘택트렌즈의 약물용출 및 항균효과에 미치는 영향)

  • Lee, Pil-Heon;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.5
    • /
    • pp.320-326
    • /
    • 2021
  • This study investigated the effect of the structure of the crosslinking agent used in contact lens polymerization on the physical properties and drug dissolution of contact lenses.es Contact lenses were manufactured using 0.3% and 3% of 4 types of crosslinking agents, respectively, and ofloxacin was used as the drug. Contact lenses using hydrophilic crosslinking agents improved water contents and wettability, and the more hydrophilic functional groups, the greater the effect. Contact lenses with a high concentration of crosslinking agent had a low concentration of eluted drug and a longer release time. The cross-linking agent structure of contact lenses had an effect on improving the performance of contact lenses and controlling drug release.

Gas Transport Properties of Crosslinked Polyimide Membranes Induced by Aliphatic Diamines with Different Chain Length (사슬 길이가 다른 지방족 디아민으로 가교된 폴리이미드 분리막의 기체 투과 특성)

  • Lee, Hye Rim;Lee, Jung Moo;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.450-459
    • /
    • 2013
  • 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) based polyimide (PI) were crosslinked with 1,2-Diaminoethane (DAE) and 1,6-Diaminohexane (DAH) to enhance gas transport properties. Fourier transform infrared (FT-IR) studies show that imide groups were converted into amide groups during crosslinking process. Thermogravimetric analysis (TGA) results indicate that the degradation temperature of crosslinked PI membranes decreased after crosslinking. This is due to degradation of alkyl group in crosslinking agent. The d-space of crosslinked PI membranes decreased with increasing crosslinking time. The ideal permeability for $CH_4$, $N_2$, $O_2$, and $CO_2$ decreased after crosslinking and the ideal permeability of crosslinked PI membranes induced by DAH is larger than that by DAE. In contrast, the permselectivity of $CO_2/CH_4$, $CO_2/N_2$ and $O_2/N_2$ increased during crosslinking. For the gas pair of $CO_2/CH_4$, the maximum increment is about 39.5% after 6 minutes of DAE crosslinking. Also, that of $O_2/N_2$ gas pair is about 20.5% after 6 minutes of DAE crosslinking. According to these result, DAE is more suitable for enhanced permselectivity than DAH. On the contrary, DAE is not useful for $CO_2/N_2$ separation due to reduction in $CO_2/N_2$ permselectivity after 3 minutes DAE crosslinking.

Synthesis of Hyper Crosslinked Polymer Particle Having Hydroxyl Group (하이드록시기를 갖는 Hyper Crosslinked 고분자 입자의 합성)

  • Jeon, Hyo-Jin;Kim, Dong-Ok;Park, Jea-Sung;Kim, Jong-Sik;Kim, Dong-Wook;Jung, Mi-Sun;Shin, Seong-Whan;Lee, Sang-Wook
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.66-71
    • /
    • 2011
  • With the synthesis of hyper crosslinked polymer particle (HCPP), having microporous structure with hydroxyl functional group, synthesized via polymerization reaction consists of three stepssuspension polymerization, hyper crosslinking by Friedel-Craft catalysis and hydrolysis reaction, the effects of the ratio of each monomer, hyper crosslinking conditions and $CO_2$ supercritical drying on the variations of surface morphology, pore size & distribution and BET surface area of HCPP have been investigated. It was observed that the formation of surface crack or fracture of HCPP was intimately related with the degree of hyper crosslinking reaction between microphase separated domains. And the value of BET surface area of HCPP increased with the increase of reaction temperature, time and the amounts of solvent used in hyper crosslinking step. Moreover, $CO_2$ supercritical drying was proven to be a very effective method for removing stabilizer, unreacted monomers and oligomers from HCPP but needed to add methanol as a co-solvent for efficient removing of residual catalyst.

Pwevaporation Separation of Aqueous Ethanol Solution Through Poly(vinyl alcohol) Membranes Crosslinked Poly(acrylic acid-co-maleic acid) (Poly(acrylic acid-co-maleic acid)로 가교된 Poly(vinyl alcohol)막을 이용한 에탄을 수용액의 투과증발분리 특성)

  • 남상용;성경수;천세원;임지원
    • Membrane Journal
    • /
    • v.12 no.4
    • /
    • pp.255-261
    • /
    • 2002
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(acrylic acid-co-maleic anhydride) (PAM) as a polymeric crosslinking agent were prepared to investigate the pervaporation performance for the dehydration separation of aqueous ethanol solution. The characteristics of the resulting membranes crosslinked(x) were analysed by FT-IR and water swelling test. The water swelling decreased with increasing crosslinking agent content. The crosslinked PVA membranes with PAM showed lower water swelling than those of PVA membrane crosslinked with glutaraldehyde and modified PVA membrane. The swelling of water molecules in the crosslinked PVA membranes is more restricted by both chemical crosslinking between PVA and polymeric crosslinking agent chains and physical crosslinking by the entanglement between the PVA and polymeric crosslinking agent chains. For the pervaporation of aqueous ethanol solution through the crosslinked membrane, as the contents of crosslinking agent increased, the separation factor increased while the permeation flux decreased. The separation factor slightly decreased and permeation flux increased with increasing feed water content. As a result it could be considered that PVA-PAM membranes suppressed the plasticization effect even in the range of high water concentration in fled.

Crosslinking reaction system of polymers (고분자 가교반응 시스템)

  • Ko, Jong-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-32
    • /
    • 2012
  • Pharmaceutical use accounts for a great part of articles and papers on crosslinking of polymers. Crosslinking of polymers used for tissue engineering and drug delivery respects non-cytotoxicity and in situ gelling. The crosslinking of polymers is aimed not only at the improvement of modulus, chemical resistance, and thermal resistance, but also at endowing them with such functions as metal adsorption, antifouling, and ion exchange via crosslinked segments. Smart polymers responding to environmental change, and cosslinking mediated by light, enzyme, natural compound and in aqueous medium in consideration of environment are being studied. Developing new polymeric materials is essential along with the pharmaceutics aiming at the longevity of 120 years old. Functionalization and property adjustment of polymers through crosslinking will be done more delicately. Hydrogels will be focused on injectable and in situ gel forming. In the coating industry crosslinking system with low non-toxicity and low energy consumption will be developed in consideration of workers and environment.

Study on Crosslinking Properties of Acrylic Pressure-Sensitive Adhesives (아크릴계 점착제의 제조와 가교물성에 관한 연구)

  • Kim, Pan Soo;Lee, Sang-Mu;Jung, Sin-Hye;Lee, Won-Ki
    • Journal of Adhesion and Interface
    • /
    • v.14 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The physical properties of the acrylic pressure sensitive adhesives (PSAs) can be easily controlled by a proper functional monomer which has functional groups for crosslinking. This study was to investigate the effect of crosslinking agents, isocyanate and epoxy types, of acrylic PSAs on adhesive properties. 2-Ethylhexyl acrylate, acrylic acid (AA), and 2-hydroxy ethyl methacrylate as monomer were used. The obtained samples with different AA contents were partially crosslinked with epoxy- or isocyanate-typed agent. Peel strength, balltack, holding power test and contraction percentage of the obtained PSA were evaluated. Most properties of acrylic PSAs were increased with AA content and acrylic PSAs with epoxy-typed crosslinking agent (4 crosslinking sites) which produces flexible link (ether), showed better properties than those of isocyanate-typed one (3 crosslinking sites).

Application of Hyaluronic Acid Membrane Cross-linked with 1,3-Butadiene Diepoxide (1,3-Butadiene diepoxide로 가교된 히아루론산 막의 응용)

  • Cheong, Seong-Ihl;Han, Gwang-Seon;Bae, Jung-Eun;Kim, In-Seop
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.124-131
    • /
    • 2008
  • The biodegradable hyaluronic acid membranes cross-linked with lactide using the crosslinking agent, 1,3-butadiene diepoxide (BD), were prepared as a potential biocompatible material for tissue engineering. The degree of lactide and BD reaction of the crosslinked membrane was determined by the analysis of nuclear magnetic resonance spectroscopy 6% of growth inhibition was observed in case of high BD concentration but the value is low enough not to affect cell growth. As the crosslinking reaction temperature increased, elongation increased and swelling ratio decreased. The rate of degradation was found to increase with the crosslinking temperature. The drug release experiment showed that the transport of drug through the membrane decreased with the crosslinking temperature.

Enhancement of Physical Properties in Partially Crosslinked Waste High Density Polyethylene (재활용 고밀도 폴리에틸렌의 가교에 의한 물성 향상 연구)

  • Lee, Jong-Rok;Lee, Dong-Gun;Hong, Soon-Man;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.25-30
    • /
    • 2007
  • The characteristics of crosslinking and physical properties in partially crosslinked waste high density polyethylene (HDPE) were studied by introducing reactive melt processing with perbutyl peroxide (PBP). It was found that impurities in waste HDPE affected the crosslinking kinetics. Decrease in density and heat of fusion were observed in partially crosslinked HDPE while its melt viscosity increased. It was explained that impurities in waste HDPE enhanced the crosslinking compared to pure HDPE As a result, dramatic mechanical property improvement was achieved in the waste HDPE by crosslinking reaction.