Browse > Article
http://dx.doi.org/10.5012/jkcs.2021.65.5.320

Effect of Crosslinking Agent Structure on Drug Release and Antibacterial Effect of Contact Lenses  

Lee, Pil-Heon (Department of Optometry & Vision Science, Daegu Catholic University)
Lee, Hyun Mee (Department of Optometry & Vision Science, Daegu Catholic University)
Publication Information
Abstract
This study investigated the effect of the structure of the crosslinking agent used in contact lens polymerization on the physical properties and drug dissolution of contact lenses.es Contact lenses were manufactured using 0.3% and 3% of 4 types of crosslinking agents, respectively, and ofloxacin was used as the drug. Contact lenses using hydrophilic crosslinking agents improved water contents and wettability, and the more hydrophilic functional groups, the greater the effect. Contact lenses with a high concentration of crosslinking agent had a low concentration of eluted drug and a longer release time. The cross-linking agent structure of contact lenses had an effect on improving the performance of contact lenses and controlling drug release.
Keywords
Contact lens; Crosslinking agent; Drug release; Antibacterial effect; Wettability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nguyen, T. K.; West J. L. Biomaterials 2002, 23, 4307.   DOI
2 Wang, Y.; Ahmed, Z.; Feng, W.; Li, C.; Song, S. Int. J. Biol. Macromol. 2008, 43, 283.   DOI
3 Holly, F. J.; Miguel, F. R. J. Biomed. Res. 1975, 9, 315.   DOI
4 Boxu, M.; Jinyu, X.; Chuanxin, L.; Chao, G.; Guang, P. IOP Conference Series: Earth and Environmental Science, 2018, 189, 23.   DOI
5 Xinming, L.; Yingde, C.; Lloyd, A. W.; Mikhalovsky, S. V.; Sandeman, S. R.; Howel, C. A.; Liewen, L. Contact Lens and Anterior Eye 2008, 31, 57.   DOI
6 Saima, A.; Saeid, R.; Kanchan, K. Sci. Res. Essay 2009, 3, 1175.
7 Kim, S. Y. Tissue Eng. Regen. Med. 2008, 5, 14.
8 Assumpta, P.; Alejandro, M.-A.; Cristina, P.; Fernando, H.-T.; Carlos, C.-T.; Gonzalo, C. Appl. Sci. 2020, 10, 5151.   DOI
9 Paola, F.; Iolanda, De M. Polymers 2021, 13, 1102.   DOI
10 Mandal, D.; Bandyopadhyay, D. Indian J. Opthalmol. 2021, 69, 466.   DOI
11 Liana, D.; Wuchte, B.; Stephen, A. D.; Mark, E. B. J. Drug Del. Sci. Tech. 2021, 63, 102413.   DOI
12 Subir, C.; Prashant U.; Manjul, M.; Srividya M., Akshara, M. R.; Kamali, N.; Zahra, S. Z.; Sayeda, F. I.; Santosh, K. M. RSC Adv. 2020, 10, 36751.   DOI
13 Elisseeff, J.; Puleo, C.; Yang, F.; Sharma, B. Orthod. Craniofac. Res. 2005, 8, 150.   DOI
14 Lin, C.-C.; Andrew, T. M. Adv. Drug Deliv. Rev. 2006, 58, 1379.   DOI
15 Woodward, G. Optometry Today 1999, 2, 27.
16 Park, H. J.; Lee H.-M. J. Korean Ophthalmic Opt. Soc. 2014, 19, 145.   DOI
17 Lee, M. J.; Sung, A. Y.; Kim, T. H. J. Korean Ophthalmic. Opt. Soc. 2014, 19, 43.   DOI
18 Enas, M. A. J. Adv. Res. 2015, 6, 105.   DOI
19 Ameen, H. M.; Mansor. B. A.; Nor, A. I.; Norhazlin, Z. Chem. Cent. J. 2018, 12, 2904
20 Vijan, L. E. Optoelectron Adv. Mat. 2009, 3, 60.
21 Hina, S.; Khuda, B.; Sobia, N.; Fahad, P.; Irsah, M. Ther. Deliv. 2021, 12, 375.   DOI
22 Jaya, M.; Vivek K. S. American J. Polym. Sci. 2014, 4, 25.
23 Rachel, S. H. W.; Mark, A.; Kalliopi, D. Pharmaceutics 2015, 7, 305.   DOI