Browse > Article

Synthesis of Hyper Crosslinked Polymer Particle Having Hydroxyl Group  

Jeon, Hyo-Jin (Hanwha Chemical Research & Development Center)
Kim, Dong-Ok (Hanwha Chemical Research & Development Center)
Park, Jea-Sung (Hanwha Chemical Research & Development Center)
Kim, Jong-Sik (Hanwha Chemical Research & Development Center)
Kim, Dong-Wook (Hanwha Chemical Research & Development Center)
Jung, Mi-Sun (Hanwha Chemical Research & Development Center)
Shin, Seong-Whan (Hanwha Chemical Research & Development Center)
Lee, Sang-Wook (Hanwha Chemical Research & Development Center)
Publication Information
Polymer(Korea) / v.35, no.1, 2011 , pp. 66-71 More about this Journal
Abstract
With the synthesis of hyper crosslinked polymer particle (HCPP), having microporous structure with hydroxyl functional group, synthesized via polymerization reaction consists of three stepssuspension polymerization, hyper crosslinking by Friedel-Craft catalysis and hydrolysis reaction, the effects of the ratio of each monomer, hyper crosslinking conditions and $CO_2$ supercritical drying on the variations of surface morphology, pore size & distribution and BET surface area of HCPP have been investigated. It was observed that the formation of surface crack or fracture of HCPP was intimately related with the degree of hyper crosslinking reaction between microphase separated domains. And the value of BET surface area of HCPP increased with the increase of reaction temperature, time and the amounts of solvent used in hyper crosslinking step. Moreover, $CO_2$ supercritical drying was proven to be a very effective method for removing stabilizer, unreacted monomers and oligomers from HCPP but needed to add methanol as a co-solvent for efficient removing of residual catalyst.
Keywords
suspension polymerization; hyper crosslinking; Friedel-Craft catalysis; micro porous structure; $CO_2$ supercritical drying;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, and C. E. Tattershall, Chem. Comm., 230 (2004).
2 P. M. Budd, E. S. Elabas, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib, C. E. Tattershall, and D. Wong, Adv. Mater., 16, 456 (2004).   DOI   ScienceOn
3 V. A. Davankov, S. V. Rogozhin, and M. P. Tsyurupa, US Patent 3,729,457 (1971).
4 V. A. Davankov and M. P. Tsyurupa, React. Polym., 13, 27 (1990).   DOI   ScienceOn
5 H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Nature, 402, 276 (1999).   DOI
6 A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc., 127, 17998 (2005).   DOI   ScienceOn
7 H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Nature Materials, 27, 501 (2007).
8 M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym., 53, 193 (2002).   DOI   ScienceOn
9 C. He, J. Huang, C. Yan, J. Liu, L. Deng, and K. Huang, J. Hazard. Mater., 180, 634 (2010).   DOI   ScienceOn
10 N. Fontanals, J. Cortes, M. Galia, and David C. Sherrington, J. Polym. Sci., Part A: Polym. Chem., 43, 1718 (2005).   DOI   ScienceOn
11 P. J. Dowding and B. Vincent, Colloids Surf. A: Physicochemical and Engineering Aspects, 161, 259 (2000).   DOI   ScienceOn
12 M. P. Tsyurupa and V. A. Davankov, React. Funct. Polym., 53, 193 (2002).   DOI   ScienceOn
13 J.-H. Ahn, J.-E. Jang, C.-G. Oh, S.-K. Ihm, J. Cortez, and David C. Sherrington, Macromolecules, 39, 627 (2006).   DOI   ScienceOn
14 Q.-Q. Liu, L. Wang, A.-G. Xiao, H.-J. Yu, and Q.-H. Tan, Eur. Polym. J., 44, 2516 (2008).   DOI   ScienceOn
15 S. Shen, X. Zhang, and L. Fan, Mater. Lett., 62, 2392 (2008).
16 J. Huang, X. Wang, and X. Deng, J. Colloid Interface Sci., 337, 19 (2009).   DOI   ScienceOn