• Title/Summary/Keyword: crosslinking

Search Result 904, Processing Time 0.034 seconds

Tuning Thermal Expansion Coefficient of Composites Containing Epoxy Resin/Inorganic Additives for Stone Conservation (에폭시 수지/무기물 첨가제 복합체의 열팽창계수 조절 및 석조문화재의 응용)

  • Choi, Yong-Seok;Chae, Il-Seok;Kang, Yong-Soo;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.27 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • The thermal expansion coefficient of epoxy/inorganic additives composites was controlled by changing the amount of the inorganic additives such as talc and fused silica. The epoxy resin comprises hydrogenated bisphenol A (HBA)-based epoxide, difunctional polyglycidyl epoxide (DPE) as a diluent and isophorone-diamine (IPDA) as a crosslinking agent, which was subsequently mixed with inorganic additives (talc and fused silica). The thermal expansion coefficient was decreased by increasing amount of inorganic additives, nearly to fresh granite. Fused silica was more effective than talc in lowering the thermal expansion coefficient. Additionally, lexural and tensile strengths of the composites were getting lower and higher with the amount of the inorganic fillers, respectively. It was thus concluded that an epoxy composite containing inorganic fillers was developed to show much lower thermal expansion coefficient, similar to fresh granite, than the neat epoxy resin, and also proper mechanical strengths for applications.

Studies on Microbial Penicillin Amidase (Part 5) Application of Reinforced Calcium-Alginate Gel Entrappment Method for Immobilization of Penicillin Amidase from Bacillus megaterium (미생물 페니실린 아미다제에 관한 연구 (제 5보) Bacillus megaterium 페니실린 아미다제의 새로운 고정화 방법)

  • Son, Hyeung-Jin;Seong, Baik-Lin;Mheen, Tae-Ick;Han, Moon-Hi
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.3
    • /
    • pp.159-164
    • /
    • 1981
  • Reinforced Calcium-alginate gel entrappment method for enzyme immobilization is described with an example of penicillin amidase from Bacillus megaterium KFCC 10029, a partially constitutive mutant of B. megaterium ATCC 14945. Penicillin amidase recovered from the fermentation broth by adsorption on celite is mixed with alginate and gelatin solution, and cast into a pellet or noodle form by coagulation in calcium salt solution followed by crosslinking with glutaraldehyde. Optimum pH and temperature of the immobilized enzyme preparation were 8.0 and 6$0^{\circ}C$, respectively. Kinetic constants such as Km value and the inhibition constant of 6-APA and phenylacetic acid were 2.6 mM, 7.4 mM and 21.2 mM, respectively. The enzyme leakage from the adsorbent during operation was successfully prevented owing to the increase of physical strength of gel coat. The half lives in a column reactor were 6 and 30 days at the respective temperature of 4$0^{\circ}C$ and 3$0^{\circ}C$, which were the 6-8 fold increased values as compared with those of without entrappment. The results highly recommended the use of reinforced Calcium-alginate gel entrappment method for the enhancement of physical strength and the operational stability of alginate gel entrapped enzyme.

  • PDF

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.

Pervaporation Characteristics of Water/ethanol Mixtures using PVA Membranes Crosslinked with Poly(styrene-maleic anhydride) (Poly (styrene-maleic anhydride)로 가교된 poly(vinyl alcohol) 막을 이용한 물/에탄올 혼합물의 투과증발 특성)

  • Kim, Sang-Gyun;Kim, Yong-Il;Lim, Gyun-Taek;Park, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.374-381
    • /
    • 1999
  • Poly(vinyl alcohol) (PVA) membranes crosslinked with poly(styrene-maleic anhydride) (PSMAn) were prepared, and the pervaporation characteristics of the membranes were studied for the separation of water/ethanol mixtures. The prepared PVA membranes showed that the permeation rate and separation factors were increased with increasing of PSMAn contents in the feed of 92/8 wt. % ethanol/water composition. However, when the water content in the feed composition was increased highly, the overall permeation rate was increased in the order of 2%>1%>0.5% in spite of the increase of the crosslinking contents, and the separation factor was decreased due to the higher sorbed water contents and the consequent plasticization action of membrane. Also, with respect to operating temperature, the permeation rate of the membranes obeyed the Arrhenius type. Especially, in the case of 2% crosslinked membrane, it was shown based on the pervaporation characteristics that both the permeation rate and separation factor were increased with increasing operating temperature from $30^{\circ}C$( to $50^{\circ}C$. From these results, it can be known that the hydrophilic groups introduced in the membrane by PSMAn highly affected the transport of permeants.

  • PDF

The Characteristic Calculation of a Phosphoric Acid Ion Exchanger using the Potentiometric Titration (전위차 적정법을 이용한 인산형 양이온교환수지의 특성 계산)

  • Kim, T.I.;Son, W.K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.871-875
    • /
    • 1999
  • We calculated the characteristics of a phosphoric cation exchanger and studied on an accurately computable method to determine the ion exchange capacity for type of potentiometric titration curve. The ion exchanger was prepared by phosphorylation of a styrene-divinylbenzene copolymer with 4% crosslinking. The ion exchange capacity is 5.7 meq/g. The experimental pK values versus ${\mathit{x}}$ in phosphoric cation exchanger can be expressed as a linear equation. The ${\Delta}pK$ values were obtained from the slope of linear equation. The ${\Delta}pK$ values are the differences of antilogarithms(pK) values of the apparent equilibrium constant at complete and zeroth neutralization of the ion exchanger. Also the experimental pK values at ${\mathit{x}}=0.5$ were accorded well with theoretical data. And when it is titrated with NaOH and $Ba(OH)_2$ solutions, a good agreement between experimental and theoretical pK values for various ${\mathit{x}}$ was seen in all the potentiometric titration curves. We knew that the inflection point of potentiometric titration curve in the case of divalent ions are changed much large than that for monovalent ions. If the relation between g values and ${\partial}pH/{\partial}g$ was plotted to the Lorentz distribution curve, ion exchange capacity can be accurately evaluated.

  • PDF

Application of UV Curable Coating for the Surface Protection of Polymeric Materials: PVC and Polystyrene (고분자 물질의 표면 보호를 위한 자외선 경화 도료의 응용)

  • Moon, Myung-Jun;Park, Jin-Hwan;Lee, Gun-Dae;Suh, Cha-Soo;Kim, Jong-Rae
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.175-184
    • /
    • 1991
  • Ultraviolet curable coatings are often used to protect the surface of polymer materials exposed to the ultraviolet radiation. However, the adhesion of epoxy acrylate on poly(vinyl chloride) and the UV curable coating on polystyren are poor. The objective of this work was to improve the adhesion of coating according to various formulations of the reactive diluents and finishing methods using the photografting of multifunctional acrylate and the surface activation on polymer surface impregnated a phtoinitiator. The addition of Tripropylene glycole diacrlate in the formulation of coating results in the improvement of adhesion of coating due to the flexibility. But the increase of the crosslinking density which results from the oxidation of surface during the exposure of UV radiation caused the loss of adhesion of coating exept the photografting method. In the trimethylolpropane triacrylate the improvement of adhesion are considerable due to the chemical bond between multifundtional acrylate and surface. From this work we expect to achieve the varity and functionality in the formulation of coating according to the photografting and surface activating of polymer.

  • PDF

Electron Microscopical Property of Transglutaminase Added Milk (트랜스글루타미나제를 첨가한 우유의 전자현미경적 특성)

  • 문정한;홍윤호
    • Food Science of Animal Resources
    • /
    • v.23 no.4
    • /
    • pp.350-355
    • /
    • 2003
  • Raw skim milk and colloidal calcium phosphate-free skim milk were treated with microbial transglutaminase (TGase), ultracentrifuged at varying rates and were observed to contain textural properties using a scanning electron microscope (SEM). Skim milk showed irregular signs of conformation at lower centrifugal rate, and associated regular (10,000 ${\times}$g) and thin with broad holes (20,000 ${\times}$g). The associated texture became thick and irregular (40,000 ${\times}$g), and fine particles were regularly associated (100,000 ${\times}$g). When skim milk was incubated for 1 hr with TGase, casein micelles aggregated and broadened as centrifugation rate increased. When skim milk was incubated for 8 hrs with TGase, casein micelles associated to large widened aggregates, and were associated regularly which then became irregular (100,000 ${\times}$g). When colloidal calcium phosphate-free skim milk incubated for 1 hr with TGase showed no sediment, the milk incubated for 8 hrs with TGase associated together, yielding broadened and regular layers as the centrifugation rate increased. It is assumed that such phenomena could be caused by protein crosslinking reaction with TGase and conformational change of casein molecules, as well as dependencies on reaction time, temperature and ultracentrifugation rate.

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis ($Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화)

  • Jee, Bong-Chul;Ha, Sung-In;Song, Min-Ah;Chung, Jang-Hoon;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2011
  • To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.

Radiation-Crosslinked Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix Hydrogel Films to Prevent Peritoneal Adhesions with physical properties and anti-adhesivity (방사선 가교된 유착방지용 Carboxymethyl Cellulose/Porcine Cartilage Acellular Matrix 수화젤 필름의 물리적 특성 및 부착 방지 평가)

  • Jeong, Sung In;Park, Jong-Seok;Gwon, Hui-Jeong;An, Sung-Jun;Song, Bo Ram;Kim, Young Jick;Min, Byoung Hyun;Kim, Moon Suk;Lim, Youn-Mook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2017
  • In this study, intermolecular crosslinked carboxymethyl cellulose sodium salt (CMC) and porcine Cartilage Acellular Matrix (PCAM) blended hydrogel films for anti-adhesive barriers were prepared by gamma-ray radiation. The effects of the CMC/PCAM concentration and blending ratio on the morphology, gel fraction, gel strength, and degree of swelling were determined. The results indicated that crosslinked CMC/PCAM films show significantly lower the gel-fraction than CMC films. The degree of attachment and proliferation of human vascular endothelial cells on CMC/PCAM films was lower than the CMC films. We show the capacity of the CMC and PCAM to be hydrogel films, and the ability to reduce cell adhesion and proliferation on these films by modification with cell anti-adhesion molecules of PCAM. In conclusion, this study suggests that radiation cross-linked CMC/PCAM hydrogel films endowed with anti-adhesion ligands may allow for improved regulation of cell anti-adhesion behavior for prevent peritoneal adhesions.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.