• Title/Summary/Keyword: cross-species microsatellite

Search Result 11, Processing Time 0.031 seconds

Newly Developed Microsatellite Markers of Mystus nemurus Tested for Cross-Species Amplification in Two Distantly Related Aquacultured Catfish Species

  • Chan, S.C.;Tan, S.G.;Siraj, S.S.;Yusoff, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1513-1518
    • /
    • 2005
  • The work reported here is an attempt to explore the possibility of DNA microsatellite loci transfer (cross-species amplification) to other economically important aquacultured catfish species other than its source species. A total of 25 new microsatellite loci developed for riverine catfish, Mystus nemurus were successfully cross-amplified in two distantly related catfish species within the suborder Siluroidei. Five out of the 19 loci that successfully cross-amplified in Pangasius micronemus were polymorphic, while for Clarias batrachus, cross-amplification was successful using 17 polymorphic loci. The observed heterozygosities were high for all the three catfishes. The results indicated that microsatellite loci could be as polymorphic in non-source species as in the source species.

Development of microsatellite markers for Hosta capitata (Asparagaceae) and amplification in related taxa

  • CHOI, Mi-Jung;LEE, Jung-Hyun;CHO, Won-Bum;HAN, Eun-Kyeong;CHOI, Hyeok-Jae
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.3
    • /
    • pp.327-332
    • /
    • 2020
  • Microsatellite markers were developed as a tool for phylogeographic studies of Hosta capitata. We also assessed cross-amplification in species closely related to Hosta capitata. We produced 28 polymorphic microsatellite markers by mapping 300 bp paired-end reads obtained from Illumina MiSeq data of H. capitata. In H. capitata, the number of alleles per locus ranged from 1 to 13. Observed and expected heterozygosity ranged from 0.000 to 0.844 and 0.000 to 0.832, respectively. Additionally, 13 loci were successfully transferable to the related species of H. minor and H. venusta. These markers will provide a powerful genetic tool not only for elucidating the phylogeographic patterns of H. capitata populations but also for studying the genetic delimitation of H. capitata from its related species.

Development and Characterization of 10 Polymorphic Microsatellite Loci in the Korean Endemic Freshwater Fish Iksookimia koreensis, and Their Cross-species Amplification in the Endemic I. longicorpa

  • Kwan, Ye-Seul;Kim, Hyo-Jin;Lee, Bit-Na;Won, Yong-Jin
    • Animal Systematics, Evolution and Diversity
    • /
    • v.33 no.2
    • /
    • pp.136-139
    • /
    • 2017
  • The genus Iksookimia (Actinopterygii: Cypriniformes: Cobitidae) is a bottom-dwelling freshwater loaches, which are well-known as their endemism and high geographic variation. However, population genetic relationships among Iksookimia spp. have remained unclear due to a shortage of genetic markers that can be applied generally in the genus. Here, we developed high-resolving microsatellite markers using I. koreensis and I. longicorpa as representatives of Iksookimia species because of their wide distribution range and phylogenetic position. Ten of polymorphic microsatellite loci were isolated from Iksookimia koreensis and were successfully cross-amplified in I. longicorpa. The mean number of observed alleles per locus was about 10.4 (range, 2-17) for I. koreensis and about 13.2 (range, 2-24) for I. longicorpa. The loci, IK03 and IK08, deviated from the Hardy-Weinberg equilibrium in I. koreensis, after applying the Bonferroni correction. The microsatellite markers obtained in the present study will be useful to evaluate population genetic structure and to establish conservation strategies for I. koreensis and related Iksookimia species.

Comparative genetic diversity of wild and released populations of Pacific abalone Haliotis discus discus in Jeju, Korea, based on cross-species microsatellite markers including two novel loci

  • An, Hye-Suck;Hong, Seong-Wan;Kim, En-Mi;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul;Park, Chul-Ji;Min, Byung-Hwa;Myeong, Jeong-In
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.305-313
    • /
    • 2010
  • Pacific abalone Haliotis discus discus is an important fisheries resource in Jeju, Korea. For basic information about its current genetic status in relation to stock enhancement, the level and distribution of genetic variation between wild and released stocks of Pacific abalone in Jeju were examined at nine cross-species microsatellite markers including the use of two novel primers. High levels of polymorphism were observed between the two populations. A total of 146 different alleles were found at all loci, with some alleles being unique. The allelic variability ranged from five to 27 in the wild population and from four to 16 in the released sample. The average observed and expected heterozygosities were estimated to be 0.74 and 0.84 in the wild sample and 0.70 and 0.78 in the released sample, respectively. Although a considerable loss of rare alleles was observed in the released sample, no statistically significant reductions were found in heterozygosity or allelic diversity in the released sample compared to the wild population. Low but significant genetic differentiation was found between the wild and released populations. These results suggest that the intensive breeding practices for stock enhancement may have resulted in a further decrease in genetic diversity, and that the cross-species microsatellite markers used in this study represent a potentially efficient means for further genetic studies, providing beneficial information for the protection and management of H. discus discus.

An Introduction to Microsatellite Development and Analysis (Microsatellite 개발 및 분석법에 대한 소개)

  • Yun Young-Eun;Yu Jeong-Nam;Lee Byoung-Yoon;Kwak Myounghai
    • Korean Journal of Plant Taxonomy
    • /
    • v.41 no.4
    • /
    • pp.299-314
    • /
    • 2011
  • The choice of molecular markers is the first step when selecting experimental plans in the field of population genetics. The popular molecular markers in population genetic studies are mainly allozyme, RAPD, RFLP, AFLP, microsatellite, SNP and ISSR. Among these, microsatellites are frequently found in nuclear, chloroplast and mitochondrial genome, showing a high level of polymorphism and nuclear microsatellites are codominant. Thus, it is a favorable molecular marker for population structure analyses and genetic diversity studies. Microsatellites are composed of tandem repeated 1~6 base pair nucleotide motifs and can be easily amplified by PCR reactions using locus specific primers. Because microsatellites have low cross-species transferability, however, they are only applicable between phylogenetically close species. In wild plants, the lack of genomic information and the high development cost of the microsatellite obstruct the wider use of microsatellites in plant population genetics research. In this review, we introduce the basis for microsatellite markers, the development process, and analytical methods as well as evolutionary models and their applications. In addition, possible genotyping errors which lead to erroneous conclusions are discussed.

Development of a Simple Method to Determine the Mouse Strain from Which Cultured Cell Lines Originated

  • Yoshino, Kaori;Saijo, Kaoru;Noro, Chikako;Nakamura, Yukio
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.14.1-14.9
    • /
    • 2010
  • Misidentification of cultured cell lines results in the generation of erroneous scientific data. Hence, it is very important to identify and eliminate cell lines with a different origin from that being claimed. Various methods, such as karyotyping and isozyme analysis, can be used to detect inter-species misidentification. However, these methods have proved of little value for identifying intra-species misidentification, and it will only be through the development and application of molecular biological approaches that this will become practical. Recently, the profiling of microsatellite variants has been validated as a means of detecting gene polymorphisms and has proved to be a simple and reliable method for identifying individual cell lines. Currently, the human cell lines provided by cell banks around the world are routinely authenticated by microsatellite polymorphism profiling. Unfortunately, this practice has not been widely adopted for mouse cells lines. Here we show that the profiling of microsatellite variants can be also applied to distinguish the commonly used mouse inbred strains and to determine the strain of origin of cultured cell lines. We found that approximately 4.2% of mouse cell lines have been misidentified; this is a similar rate of misidentification as detected in human cell lines. Although this approach cannot detect intra-strain misidentification, the profiling of microsatellite variants should be routinely carried out for all mouse cell lines to eliminate inter-strain misidentification.

Development of EST-SSR markers for the Korean endemic species Chrysosplenium aureobracteatum (Saxifragaceae)

  • SHIN, Jae-Seo;KIM, Bo-Yun;KIM, Yong-In;LEE, Jung-Hoon;KIM, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.1
    • /
    • pp.22-26
    • /
    • 2020
  • Chrysosplenium aureobracteatum Y. I. Kim & Y. D. Kim (Saxifragaceae) is a recently described endemic species growing in the central part of the Korean peninsula. It requires constant monitoring for conservation due to its limited distributions. There is also a need for molecular markers for proper assessments of the genetic differentiation of C. aureobracteatum from species morphologically similar to it. In this study, we developed microsatellite markers that can be used to evaluate the genetic diversity of this species, representing fundamental data with which to conserve the natural populations of the species. A total of 17 expressed sequence tag-simple sequence repeat (EST-SSR) markers were developed by the Illumina pair-end sequencing of the transcriptomes of C. aureobracteatum. These markers were successfully applied to populations of C. aureobracteatum and to its most closely related species, C. barbatum, revealing high polymorphism in both species. The EST-SSR markers developed in this study were proven to be useful not only to monitor the population genetic structure of C. aureobracteatum for conservation purposes but also to study the genetic delimitation of the species from species closely related to it.

Genetic Characterization, Morphometrics and Gonad Development of Induced Interspecific Hybrids between Yellowtail Flounder, Pleuronectes ferrugineus (Storer) and Winter Flounder, Pleuronectes americanus (Walbaum)

  • Park, In-Seok;Nam, Yoon-Kwon;Susan E. Douglas;Stewart C. Johnson;Kim, Dong-Soo
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.28-28
    • /
    • 2003
  • Viable interspecific hybrids between yellowtail flounder (Pleuronectes ferrugineus, Store.) and winter flounder (Pleuronectes americanus, Walbaum) were produced by artificial insemination of yellowtail flounder eggs with winter flounder sperm. However, mean fertilization rate, hatching success and early survival up to 3 weeks post hatch were significantly lower than those of parental pure cross controls (P<0.01). Overall, cytogenetic traits (karyological analysis and estimation of cellular DNA contents using flow cytometry) of hybrid flounder were intermediate between the two parental species. Microsatellite assay was used to distinguish the parental genomes in the hybrids; in most cases, one allele was specific to each of the parents. Morphometrics assessed by body proportions indicated that hybrids generally displayed a morphology intermediate between the maternal and paternal species. Interspecific hybrids exhibited abnormal and retarded gonad development in both sexes based on histological analysis of gonads from adult fish. The sterility of the hybrids presents a significant advantage for their use in aquaculture, as potential escapees would not be capable of reproducing in the wild and contaminating natural stocks.

  • PDF

Analysis of the genetic diversity and population structure of Lindera obtusiloba (Lauraceae), a dioecious tree in Korea

  • Ho Bang Kim;Hye-Young Lee;Mi Sun Lee;Yi Lee;Youngtae Choi;Sung-Yeol Kim;Jaeyong Choi
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.207-214
    • /
    • 2023
  • Lindera obtusiloba (Lauraceae) is a dioecious tree that is widely distributed in the low-altitude montane forests of East Asia, including Korea. Despite its various pharmacological properties and ornamental value, the genetic diversity and population structure of this species in Korea have not been explored. In this study, we selected 6 nuclear and 6 chloroplast microsatellite markers with polymorphism or clean cross-amplification and used these markers to perform genetic diversity and population structure analyses of L. obtusiloba samples collected from 20 geographical regions. Using these 12 markers, we identified a total of 44 alleles, ranging from 1 to 8 per locus, and the average observed and expected heterozygosity values were 0.11 and 0.44, respectively. The average polymorphism information content was 0.39. Genetic relationship and population structure analyses revealed that the natural L. obtusiloba population in Korea is composed of 2 clusters, possibly due to two different plastid genotypes. The same clustering patterns have also been observed in Lindera species in mainland China and Japan.

Detection of QTLs Influencing Panicle Length, Panicle Grain Number and Panicle Grain Sterility in Rice(Oryza sativa L.)

  • Ahamadi, Jafar;Fotokian, M.H.;Fabriki-Orang, S.
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.163-170
    • /
    • 2008
  • The detection, characterization and use of quantitative traits loci, QTL, have significant potential to improve the efficiency of selective breeding of species. Therefore, a population with 59 advanced backcross lines($BC_2F_5$), derived from a cross between IR64 and Tarome molaei, were studied in Tonekabon Rice Research Station of Iran in order to map QTLs for panicle length, number of grain per panicle, and panicle grain sterility in rice. The parental screening wtih 235 SSR markers in agarose and polyacrylamide gels revealed 114 markers with clear polymorphic bands. To search for QTLs associated with panicle length, number of grain per panicle, and panicle grain sterility, we constructed a genetic linkage map using 114 microsatellite markers. Positive and negative transgressive segregations were observed in $BC_2F_5$ lines for all traits. Using multiple interval mapping(MIM), a total of 20 putative QTLs were detected, of which eight were for panicle length, three for number of grains, and nine for panicle grain sterility. The maximum number of QTLs were mapped on chromosomes 1 and 2 with eight QTLs. These QTL markers could possible be utilized for marker-assisted selection.

  • PDF