• Title/Summary/Keyword: cross tunnel

Search Result 466, Processing Time 0.027 seconds

Case study of microseismic techniques for stability analysis of pillars in a limestone mine (석회석 광산 내 광주의 안정성 분석을 위한 미소진동 계측기술의 현장적용)

  • Kim, Chang Oh;Um, Woo-Yong;Chung, So-Keul;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • This study deals with the case that was the field application of the microseismic monitoring techniques for the stability monitoring in a domestic mine. The usefulness and limitations of the microseismic techniques were examined through analyzing the microseismic monitored data. The target limestone mine adopted a hybrid room-and-pillar mining method to improve the extraction ratio. The accelerometers were installed in each vertical pillar within the test bed which has the horizontal cross-section $50m{\times}50m$. The measured signals were divided into 4 types; blasting induced signal, drilling induced signal, damage induced signal, and electric noise. The stability analysis was performed based on the measured damage induced signals. After the blasting in the mining section close to the test bed, the damage of the pillar was increased and rockfall near the test bed could be estimated from monitored microseismic data. It was possible to assess the pillar stability from the changes of daily monitored data and the proposed safety criteria from the accumulated monitored data. However, there was a difficulty to determine the 3D microseismic source positions due to the 2D local sensor arrays. Also, it was needed to use real-time monitoring methods in domestic mines. By complementing the problems encountered in the mine application and comparing microseismic monitored data with mining operations, the microseismic monitoring technique can be used as a better safety method.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Geotechnical Engineering Progress with the Incheon Bridge Project

  • Cho, Sung-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.133-144
    • /
    • 2009
  • Incheon Bridge, 18.4 km long sea-crossing bridge, will be opened to the traffic in October 2009 and this will be the new landmark of the gearing up north-east Asia as well as the largest & longest bridge of Korea. Incheon Bridge is the integrated set of several special featured bridges including a magnificent cable-stayed girder bridge which has a main span of 800 m width to cross the navigation channel in and out of the Port of Incheon. Incheon Bridge is making an epoch of long-span bridge designs thanks to the fully application of the AASHTO LRFD (load & resistance factor design) to both the superstructures and the substructures. A state-of-the-art of the geotechnologies which were applied to the Incheon Bridge construction project is introduced. The most Large-diameter drilled shafts were penetrated into the bedrock to support the colossal superstructures. The bearing capacity and deformational characteristics of the foundations were verified through the world's largest static pile load test. 8 full-scale pilot piles were tested in both offshore site and onshore area prior to the commencement of constructions. Compressible load beyond 30,000 tonf pressed a single 3 m diameter foundation pile by means of bi-directional loading method including the Osterberg cell techniques. Detailed site investigation to characterize the subsurface properties had been carried out. Geotextile tubes, tied sheet pile walls, and trestles were utilized to overcome the very large tidal difference between ebb and flow at the foreshore site. 44 circular-cell type dolphins surround the piers near the navigation channel to protect the bridge against the collision with aberrant vessels. Each dolphin structure consists of the flat sheet piled wall and infilled aggregates to absorb the collision impact. Geo-centrifugal tests were performed to evaluate the behavior of the dolphin in the seabed and to verify the numerical model for the design. Rip-rap embankments on the seabed are expected to prevent the scouring of the foundation. Prefabricated vertical drains, sand compaction piles, deep cement mixings, horizontal natural-fiber drains, and other subsidiary methods were used to improve the soft ground for the site of abutments, toll plazas, and access roads. Light-weight backfill using EPS blocks helps to reduce the earth pressure behind the abutment on the soft ground. Some kinds of reinforced earth like as MSE using geosynthetics were utilized for the ring wall of the abutment. Soil steel bridges made of corrugated steel plates and engineered backfills were constructed for the open-cut tunnel and the culvert. Diverse experiences of advanced designs and constructions from the Incheon Bridge project have been propagated by relevant engineers and it is strongly expected that significant achievements in geotechnical engineering through this project will contribute to the national development of the longspan bridge technologies remarkably.

  • PDF

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.

Study on the Testing Method for Setting Time of Set Accelerating Agent Using Shotcrete by Gilmour Needles (길모어침에 의한 숏크리트용 급결제의 품질시험방법에 대한 고찰)

  • Kim, Chun Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.195-200
    • /
    • 2011
  • KS F 2782 (for shotcrete accelerators) standard cross-section of tunnel construction or repair is a reinforcement used in the field of shotcrete accelerators as a criterion in assessing shotcrete performance. Thus, KS F 2782 by standard accelerator will determine the nature of the product of concrete accelerators that will be used to record variations in the product roles, through determination of the quality of the experimental method to identify only the quality of the many variables that exist. This evaluation standard has so far distinguished accelerator products in indoor experiments that do not meet quality standards but were mostly for an on-site accelerator mixed with the shotcrete after being quite satisfied with the level of quality in a certain number of products. This observation is derived from the results of an indoor experiment considered to verify whether the site is suitable for indoor experiments, and whether its actual location in the city is relevant to the accelerator quality, to find a way to test if it fits. This study centers on the material conditions of the shotcrete accelerator and a variety of experimental results, and used the Gilmore needle to compare the compressive strength and KS F 2782 specification of the accelerator as a means to ensure product quality conformity analysis and for further research experiments. In conclusion, a portion of KS F 2782 standard that fixes the problems that can be resolved from the ground up as a whole is not a review for the domestic reality. As an indoor experiment to ensure uniformity in the field when applied in a sufficient correlation, complement must be in place.

Correlation of Hanwoo (Korean Native Cattle) Carcass Classification and Oocyte Donor for Blastocyst Production In Vitro (한우 육질등급이 난포란의 배반포 체외생산에 미치는 영향)

  • Kim, Kang-Sig;Lee, Hong-Chul;Park, Yong-Su;Kim, So-Sub;Park, Hum-Dai
    • Journal of Embryo Transfer
    • /
    • v.30 no.3
    • /
    • pp.161-170
    • /
    • 2015
  • These studies were conducted to establish the practical Hanwoo (Korean native cattle) improvement system through the combining of embryo transfer technology and confirming individual Hanwoo oocyte culture system and to investigate that correlation of Hanwoo carcass classification (intramuscular marbling) and oocyte donor for blastocyst production in vitro. In case of Hanwoo, the carcass meat quality grades were divided to grade $1^{{+}{+}}$, $1^{+}$, 1, 2, and 3 depends on fat distribution of longest muscle cross-sectional surface. As results, the numbers of follicular oocytes collected from individual fundamentally-registered Hanwoo yielded $1^{{+}{+}}$, $1^{+}$, 1, 2 and 3 meat quality were 9.5, 9.4, 8.5, 8.8 and 8.8 per ovary, respectively. The numbers of retrieval oocyte from follicles were significantly higher in the cattle yield $1^{{+}{+}}$, $1^{+}$ meat quality than in the cattle yield 1, 2 and 3 meat quality (p<0.05). The rates of blastocyst formation were 18.2, 21.3, 29.4, 30.9, and 31.5% in the cattle yield $1^{{+}{+}}$, $1^{+}$, 1, 2 and 3 meat quality of after in vitro maturation, respectively. It was significantly lower in the cattle yield $^{{+}{+}}$ and $1^{+}$ meat quality than in the cattle yield 1, 2 and 3 meat quality (p<0.05). In order to evaluate embryos quality, TUNNEL assay was conducted for each meat quality grade using blastocyst stage embryo on day 8. The results showed that apoptosis cell number was higher tendency in the cattle yield $1^{{+}{+}}$and $1^{+}$ meat quality (81 and 79, respectively) than in the cattle yield 1, 2 and 3 meat quality (51, 48 and 50, respectively) but there was no statistical significance in each group. After embryo transfer, the conception rate of recipient was 53.5 (23 out of 43), 52.1 (38 out of 73) and 58.0% (58 out of 100) in the meat quality of 1, $1^{+}$ and $1^{{+}{+}}$, respectively. These results showed that the conception rate was significantly higher in the cattle yield 1 meat quality than in the cattle yield $1^{{+}{+}}$, $1^{+}$, 2, and 3 meat quality (p<0.05). In summary, these results indicate that the application of confirming Hanwoo individual oocyte culture system and embryo transfer technology can make good use of the genetic resources conservation and improvement of Hanwoo. Relevance of the meat quality grade and reproductive ability of carcasses of Hanwoo will be considered to be one of the effective means for the associated research with obesity and reproduction.

Study on Potential Water Resources of Andong-Imha Dam by Diversion Tunnel (안동-임하 연결도수로 설치에 따른 가용 수자원량에 관한 연구)

  • Choo, Yeon Moon;Jee, Hong Kee;Kwon, Ki Dae;Kim, Chul Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1126-1139
    • /
    • 2014
  • World is experiencing abnormal weather caused by urbanization and industrialization increasing greenhouse gas and one of these phenomenon domestically happening is flood and drought. The increase of green-house gases is due to urbanization and industrialization acceleration which are causing abnormal climate changes such as the El Nino and a La Nina phenomenon. It is expected that there will be many difficulties in water management, especially considering the topography and seasonal circumstances in Korea. Unlike in the past, a variety of water conservation initiatives have been undertaken like the river-management flow and water capacity expansion projects. To meet the increasing demand for water resources, new environmentally-friendly small and medium-sized dams have been built. Therefore, the development of a new paradigm for water resources management is essential. This study shows that additional security is needed for potential water resources through diversion tunnels and is very important to consider for future water supplies and situations. Using RCP 6.0 and RCP 8.5 in representative concentration pathway climate change scenario, specific hydrologic data of study basin was produced to analyze past observed basin rainfall tendency which showed both scenario 5%~9% range increase in rainfall. Through sensitivity analysis using objective function, population in highest goodness was 1000 and cross rate was 80%. In conclusion, it is expected that the results from this study will help to make long-term and stable water supply plans by using the potential water resource evaluation model which was applied in this study.

Fire resistance assessment in construction joint of precast fireproof duct slab (프리캐스트 방식 내화풍도슬래브 시공조인트부의 화재저항성능 평가)

  • Choi, Soon-Wook;Kang, Tae-Ho;Lee, Chulho;Kim, Se Kwon;Kim, Tae Kyun;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.359-370
    • /
    • 2021
  • Duct slabs, which are used to build ventilation facilities in underground spaces with transverse ventilation system, need to secure fire resistance according to longitudinal and heavy vehicle traffic of tunnels. This study measured the temperature change at the construction joint of the precast fireproof duct slab which integrates fire resistance material and duct slab under the RWS fire scenario. As a result, it was confirmed that if there is no reinforcement of the construction joint, damage will occur in concrete inside the construction joint, leading to damage to the fireproofing layer. On the other hand, when one side of the construction joint was reinforced with fireproofing materials, it showed more than three times the fire resistance performance compared to when there was no reinforcement. At this time, cross-sectional losses of concrete and fireproofing layer were shown in blocks without reinforcement, but no damage was seen in the reinforced blocks.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.