DOI QR코드

DOI QR Code

Analysis of Nonlinear Destructive Interaction between Wind and Wave Loads Acting on the Offshore Wind Energy Converter based on the Hydraulic Model Test

해상 풍력발전체에 작용하는 풍하중과 파랑하중간의 비선형 상쇄간섭 해석 -수리모형실험을 중심으로

  • Received : 2015.07.31
  • Accepted : 2015.08.25
  • Published : 2015.10.31

Abstract

In order to quantitatively estimate the nonlinear destructive interaction of wave load with wind load, which is very vital for the optimal design of offshore wind energy converter, we carried out a hydraulic model test and wind tunnel test. As a substructure of offshore wind energy converter, we would deploy the monopile, which is popular due to its easiness in construction. Based on the simulation using Monte Carlo simulation using Kaimal spectrum and cross spectrum, the instantaneous maximum wind velocity is adjusted to 10 m/s. And, considering the wave conditions of the Western Sea where a pilot wind farm is planned to be constructed, $H_s=0.1m$, 0.15 m, 0.2 m is carefully chosen. It turns out that the nonlinear destructive interaction between the wind and wave loads acting on the offshore wind energy converter is more clearly visible at rough seas rather than at mild seas, which strongly support our deduction that a Large eddy, a swirling vortex developed near the bumpy water surface in the opposite direction of the wind, is the driving mechanism underlying nonlinear destructive interaction between the wind and wave loads.

해상 풍력발전체 최적설계에 필요한 파력과 풍력의 비선형 상쇄 간섭 생성기작을 규명하기 위해 5MW급 해상풍력 발전체를 대상으로 1/50 scale로 수리모형실험을 수행하였다. 해상풍력 발전체의 하부구조물은 시공이 용이하여 가장 선호되는 mono pile로 선정하였다. 돌풍은 Kaimal 스펙트럼과 상호스펙트럼에 기초한 Monte carlo 모로 재현하였으며, 모의결과를 토대로 순간 최대풍속은 10 m/s로 조정하였다. 파고는 해상풍력 시범단지가 예정되어있는 우리나라 서해안 해역의 파황을 고려하여 $H_s=0.1m$, 0.15 m, 0.2 m로 선정하였다. 수리모형실험 결과, 파력과 풍력의 비선형 상쇄 간섭은 해역이 거칠수록 보다 확연하게 관측되었으며, 이러한 결과는 해수면 요철로 인해 대기와 해수면의 경계에서 출현하는 Large eddy가 비선형 상쇄 간섭의 생성 기작이라는 우리의 추론을 뒷받침한다.

Keywords

References

  1. Adrian, R.J. (2007). "Hairpin vortex organization in wall turbulence", Phys. Fluids, 19, 041301. https://doi.org/10.1063/1.2717527
  2. Adrezin, R., Bar-Avi, P., and Benaroya, H. (1996). "Dynamic response of compliant offshore structures-review", Journal of aerospace engineering, Vol. 9, No. 4.
  3. Banner, and Melville (1976). "On the separation of air flow over water waves", Journal of fluid mechanics, Vol. 77, No. 4.
  4. Cho, Y.J., Kim, B.K., and Yang, K.S. (2015). "Nonlinear destructive interaction between wind and wave loads acting on the offshore wind energy converter", Proceedings of OFFSHORE 2015, Copenhagen, Denmark.
  5. Chopra, A.K. (1995). "Dynamics of structures", Prentice-hall, INC.
  6. Deodatis, G. (1996A). "Simulation of ergodic multi variate stochastic processes", Journal of engineering mechanics.
  7. Deodatis, G. (1996B). "Simulation of stochastic processes and fields to model loading and material uncertainties, Probabilistic methods for structural design", C. G. Soares, ed., Kluwer academic publishers, Boston, Mass.
  8. Frigaard, P. and Andersen, T.L. (2010). "Technical background material for the wave generation software awasys 5", DCE Technical reports No. 64, Aalborg University.
  9. Kaimal, J.C., Wyngaard, J.C., Izumi, Y., and Cote, O.R. (1972). "Spectral characteristics of surface-layer turbulence", J. Royal Meteorological Soc., London, England, 98, 563-589 https://doi.org/10.1002/qj.49709841707
  10. Kim, C.H. (2008). "Nonlinear waves and offshore structures", World scientific.
  11. Manenti, S. and Petrini, F. (2010). "Dynamic analysis of an offshore wind turbine: wind-waves nonlinear interaction", Earth and Space 2010: Engineering, Science, Construction and Operation in Challenging Environments, 2010 (ASCE, 2010).
  12. Morison J.R., O'Brien M.P., Johnson J.W., and Schaaf S.A. (1950). "The force exerted by surface waves on piles", Petrol. Trans. AIME 189.
  13. Sarpkays, T.S. (2010). "Wave forces on offshore structures", Cambridge university press.
  14. Simiu, E. and Scanlan, R. H. (1996). "Wind effects on structures", John Wiley & Sons, INC.