• Title/Summary/Keyword: cross linking

Search Result 664, Processing Time 0.033 seconds

Effect of cultured chondrocyte-seeded chondroitin-sulfate conjugated type I collagen scaffold on cartilage regeneration (콘드로이틴 환산염을 결합한 I형 콜라겐지지체와 연골세포를 이용한 연골재생)

  • Lim, Joong Jae;Son, Daegu;Son, Kyounghee;Yang, Eunkyung;Han, Kihwan
    • Archives of Plastic Surgery
    • /
    • v.34 no.4
    • /
    • pp.413-419
    • /
    • 2007
  • Purpose: In this study, porous type I collagen scaffolds were cross-linked using dehydrothermal(DHT) treatment and/or 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide(EDC), in the presence and absence of chondroitin-6-sulfate(CS) and cultured autologous chondrocytes(Chondro) for cartilage regeneration. Methods: Cartilage defects were created in the proximal part of the ear of New Zealand rabbits. Four prepared types of scaffolds(n=4) were inserted. The groups included Chondro-Collagen-DHT(Group 1), Chondro- Collagen-DHT-EDC(Group 2), Chondro-CS-Collagen- DHT(Group 3), and Chondro-CS-Collagen-DHT-EDC (Group 4). Histomorphometric analysis and cartilage-specific gene expression of the reconstructed tissues were evaluated 4, 8, and 12 weeks after implantation. Results: EDC cross-linked groups 2 and 4 regenerated more cartilage than other groups. However, calcification was observed in the 4th week after implantation. CS did not increase chondrogenesis in all groups. Cartilage-specific type II collagen mRNA expression increased in the course of time in all groups.Conclusion: EDC cross-linking methods maintain the scaffold and promote extracellular matrix production of chondrocytes.

A Novel Synthetic Route to Highly Cross-Linked Poly(vinyl ethers): Ⅲ. Synthesis and Free Radical Polymerization of Aryloxyethyl Vinyl Ethers Having an Electron Acceptor in ortho- or meta-Position

  • 이주연;김무용;안광덕
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.318-323
    • /
    • 1997
  • ο-(2-Vinyloxyethoxy)benzylidenemalononitrile (3a) and methyl ο-(2-vinyloxyethoxy)-benzylidenecyanoacetate (3b), m-(2-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl m-(2-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of ο-(2-vinyloxyethoxy)benzaldehyde (1) and m-(2-vinyloxyethoxy)benzaldehyde (2) with malononitrile or methyl cyanoacetate, respectively. Bifunctional vinyl ether monomers 3a and 3b polymerized quantitatively with radical initiators in γ-butyrolactone solution at 65 ℃, while meta-isomers 4a and 4b gave lower yields of polymers under the same conditions. The polymers 5-6 obtained from the monomers 3-4 were insoluble in common solvents due to cross-linking. Under the same polymerization conditions ethyl vinyl ether polymerized well with model compounds ο-methoxybenzylidenemalononitrile 7a, methyl ο-methoxybenzylidenecyanoacetate 7b, m-methoxybenzylidenemalononitrile 8a, and methyl m-methoxybenzylidenecyanoacetate 8b, respectively, to give 1:1 alternating copolymers 9-10 in high yields. Cross-linked polymers 5-6 showed a thermal stability up to 300 ℃, and showed a double phase degradation pattern in their TGA thermograms. Polymers 5-6 showed broad endothermic bands around 75-110 ℃ without any characteristic Tg peaks in DSC thermograms. Alternating copolymers 9-10, except copolymer 9b were soluble in common organic solvents. The inherent viscosities of polymer 9-10 were in the range of 0.35-0.62 dL/g. Polymer films cast from acetone solution were cloudy and tough and Tg values obtained from DSC thermograms were in the range of 118-165 ℃.

Formation and Characterization of Polyvinyl Series Organic Insulating Layers (폴리비닐 계열 유기절연막 형성과 특성평가)

  • Jang Ji-Geun;Jeong Jin-Cheol;Shin Se-Jin;Kim Hee-Won;Kang Eui-Jung;Ahn Jong-Myong;Seo Dong-Gyun;Lim Yong-Gyu;Kim Min-Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.1 s.14
    • /
    • pp.39-43
    • /
    • 2006
  • The polyvinyl series organic films as gate insulators of thin film transistor(TFT) have been processed and characterized on the polyether sulphone (PES) substrates . The poly-4-vinyl phenol(PVP) and polyvinyl toluene (PVT) were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series; copolymer PVP(10 wt%), 5wt% cross-linked PVP(10 wt%), copolymer PVP(20 wt%), 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current of 1.2 pA at ${\pm}10V$. The ms value of surface roughness and the capcitance per unit area are 2.41 and $1.76nF/cm^2$ in the case of 10 wt% cross-linked PVP(20 wt%) layer, respectively.

  • PDF

Reduced Protein Denaturation in Thermotolerant Cells by Elevated Levels of HSP70 (열내성이 유도된 세포에서 HSP70 단백질 증가에 의한 단백질 변성 감소)

  • Han, Mi-Young;Park, Young-Mee
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.433-444
    • /
    • 1996
  • We describe a novel approach to evaluate quantitatively the amounts of denatured proteins in cells upon heat exposure. A thiol compound, diamide [azodicarboxylic acid bis (dimethylamide)] causes protein cross-linking with exposed sulfyhydryl residues of denatured proteins. Since denatured proteins expose normally well-hidden sulfhydryl groups, these will be preferentially cross-linked by diamide. Thus diamide acts to 'trap' denatured proteins. We observed that protein aggregates (high molecular weight protein aggregates, HMA) appeared on SDS-polyacrylamide gels run under non-reducing conditions and that the amount of HMA can be quantified by scanning the gels using a gas flow counter. Heating cells followed by a fixed dose of diamide exposure resulted in HMA increases in a heat-dose dependent manner, demonstrating that the quantitation of HMA could serve as a measure of heat-denatured proteins. We compared thermotolerant and nontolerant cells and found decreased HMA in tolerant cells upon heat treatment. As an attempt to examine the kinetics of protein renaturation (or 'repair'), we measured the amounts of aggregates formed by the addition of diamide at various times after heat shock. Such experiments demonstrate an equally rapid disappearance of HMA in previously unheated and in thermotolerant cells. Levels of HMA in tolerant cells increased significantly after electroporation of HSP70 specific mAbs, suggesting an involvement of HSP70 in reducing HMA levels in thermotolerant cells upon heat exposure. Immunoprecipitation studies using anti-HSP70 antibody indicated an association of HSP70 with heat-denatured proteins. Our results suggest that heat induces protein denaturation, and that elevated level of HSP70 present in thermotolerant cells protects them by reducing the level of protein denaturation rather than by facilitating the 'repair' (or degradation) process.

  • PDF

Linking Cultural Intelligence to Satisfaction with Staying in the Host Country and Performance: the Moderating Effect of International Experience (문화지능이 이문화 적응, 해외 체류만족과 직무성과에 미치는 영향: 국제경험의 조절효과)

  • Li, Xin Tian
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.422-429
    • /
    • 2014
  • This study aims to analyze the cultural intelligence and it's relationship with cross-culture adjustment satisfaction, and performance, and then, we prove the moderating role of international experience between cultural intelligence and cross-culture adjustment with staying in the host country. An exploratory pilot study was conducted with a sample of 188 Chinese expatriates working in Korean company in Korea. Then, we proved the moderating role of international experience between cultural intelligence and cross-cultural adjustment. The results of this study have three implications for human resource development. First this study expanded the research of CQ up to the area of empirical investigation. Second, the empirical findings also supported an incremental and predictive validity that CQ increased explained variance of cross-cultural adjustment. Third, the moderating role of international experience in this study showed the importance of both CQ and international experience with staying in the host country.

Physicochemical Properties of Cross-linked Rice Starches (가교화 쌀 전분의 이화학적 특성)

  • Choi, Hyun-Wook;Chung, Koo-Min;Kim, Chung-Ho;Moon, Tae-Hwa;Park, Cheon-Seok;Baik, Moo-Yeol
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.49-54
    • /
    • 2006
  • Physicochemical properties of cross-linked rice starches were investigated. Swelling power of cross-linked rice starch increased at relatively lower temperature $(60^{\circ}C)$ than native rice starch $(70^{\circ}C)$. Cross-linked rice starch showed lower solubility $(1.7{\sim}6.1%)$ than native rice starch $(2.2{\sim}13.8%)$ and solubility is not significantly different with the amount of phosphorus oxychloride. Pasting temperature $(69.2{\sim}70.6^{\circ}C)$ and peak viscosity $(2,874{\sim}3,175\;cp)$ of cross-linked rice starch were lower than native starch $(71.6^{\circ}C,\;3,976\;cp)$, but holding strength $(2,177{\sim}2,708\;cp)$ and final viscosity $(3,424{\sim}3,826 \;cp)$ of cross-linked rice starch were higher than native starch (1,000 cp, 2,312 cp). DSC thermal transitions of cross-linked rice starches were shifted to a lower temperature than native rice starch but there was no significant difference in gelatinization enthalpy between native and cross-linked rice starches. X-ray diffraction pattern of both native and cross-linked rice starches showed typical A-type crystal indicating that cross-linking had not affected the crystalline region of starch.

Organic Thin Film Transistors with Cross-Linked PVP Gates (Cross-Linked PVP 게이트 유기 박막트랜지스터)

  • Jang Ji-Geun;Oh Myung-Hwan;Chang Ho-Jung;Kim Young-Seop;Lee Jun-Young;Gong Myoung-Seon;Lee Young-Kwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.37-42
    • /
    • 2006
  • The preparation and processing of PVP-gate insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). One of polyvinyl series, poly-4-vinyl phenol(PVP) was used as a solute and propyleneglycol monomethyl etheracetate(PGMEA) as a solvent in the formation of organic gate solutions. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compounds. From the measurements of electrical insulating characteristics of metal-insulator-metal (MIM) samples, PVP-based insulating layers showed lower leakage current according to the increase of concentration of PVP and poly (melamine-co-formaldehyde) to PGMEA in the formation of organic solutions. The PVP(20 wt%) copolymer with composition of 20 wt% PVP to PGMEA and cross-linked PVPs in which 5 wt% and 10 wt% poly (melamine-co-formaldehyde) hardeners had been additional]y mixed into PVP(20 wt%) copolymers were used as gate dielectrics in the fabrication of OTFTs, respectively. In our experiments, the maximum field effect mobility of $0.31cm^2/Vs$ could be obtained in the 5 wt% cross-linked PVP(20 wt%) device and the highest on/off current ratio of $1.92{\times}10^5$ in the 10 wt% cross-linked PVP(20 wt%) device.

  • PDF

Preparation and Characterization of Organic Solvent-resistant Polybenzimidazole Membranes (용매저항성 폴리벤즈이미다졸 분리막의 제조 및 특성평가)

  • Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.420-426
    • /
    • 2017
  • Recently, solvent-resistant nanofiltration membranes have been studied for the separation of solvents or solutes using a molecular weight cut-off system of the polymer which is resistant to a specific solvent. Required conditions for these membranes must have are excellent physical properties and solvent resistance. Polybenzimidazole, which is known to be one of the most heat-resistant commercially available polymers, has an excellent inherent solvent resistance and it is even insoluble in stronger organic solvents when cross-linked. Therefore, in this study, the applicability of polybenzimidazole as a solvent resistant nanofiltration membrane was discussed. The membrane was fabricated using the non-solvent induced phase separation method and showed a suitable morphology as a nanofiltration membrane confirmed by field emission scanning electron microscopy. In addition, the permeance of the solvent in the presence or absence of cross-linking was investigated and the stability was also confirmed through long operation. The permeance test was carried out with five different solvents: water, ethanol, benzene, N, N-dimethylacetamide (DMAc) and n-methyl-2-pyrrolidone (NMP); each of the initial flux was $6500L/m^2h$ (water, 2 bar), $720L/m^2h$ (DMAc, 5 bar), $185L/m^2h$ (benzene, 5 bar), $132L/m^2h$ (NMP, 5 bar), $65L/m^2h$ (ethanol, 5 bar) and the pressure between 2 and 5 bar was applied depending on the type of membrane.

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application (유청단백질을 이용한 미세캡슐의 응용)

  • Lee, Sung-Je
    • 한국유가공학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.37-61
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) at 37$^{\circ}C$, A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15-30%, pH 4.5-7.2) at a proportion of 25-50% (w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil (50 $^{\circ}C$)to form an O/W/O double emulsion and then heated at 85$^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF

Characterization of ginsenoside compound K loaded ionically cross-linked carboxymethyl chitosan-calcium nanoparticles and its cytotoxic potential against prostate cancer cells

  • Zhang, Jianmei;Zhou, Jinyi;Yuan, Qiaoyun;Zhan, Changyi;Shang, Zhi;Gu, Qian;Zhang, Ji;Fu, Guangbo;Hu, Weicheng
    • Journal of Ginseng Research
    • /
    • v.45 no.2
    • /
    • pp.228-235
    • /
    • 2021
  • Backgroud: Ginsenoside compound K (GK) is a major metabolite of protopanaxadiol-type ginsenosides and has remarkable anticancer activities in vitro and in vivo. This work used an ionic cross-linking method to entrap GK within O-carboxymethyl chitosan (OCMC) nanoparticles (Nps) to form GK-loaded OCMC Nps (GK-OCMC Nps), which enhance the aqueous solubility and stability of GK. Methods: The GK-OCMC Nps were characterized using several physicochemical techniques, including x-ray diffraction, transmission electron microscopy, zeta potential analysis, and particle size analysis via dynamic light scattering. GK was released from GK-OCMC Nps and was conducted using the dialysis bag diffusion method. The effects of GK and GK-OCMC Nps on PC3 cell viability were measured by using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Fluorescent technology based on Cy5.5-labeled probes was used to explore the cellular uptake of GK-OCMC Nps. Results: The GK-OCMC NPs had a suitable particle size and zeta potential; they were spherical with good dispersion. In vitro drug release from GK-OCMC NPs was pH dependent. Moreover, the in vitro cytotoxicity study and cellular uptake assays indicated that the GK-OCMC Nps significantly enhanced the cytotoxicity and cellular uptake of GK toward the PC3 cells. GK-OCMC Nps also significantly promoted the activities of both caspase-3 and caspase-9. Conclusion: GK-OCMC Nps are potential nanocarriers for delivering hydrophobic drugs, thereby enhancing water solubility and permeability and improving the antiproliferative effects of GK.