• Title/Summary/Keyword: crop analysis

Search Result 3,074, Processing Time 0.048 seconds

Major character analysis of CAX 1 (cation exchanger 1) transgenic rice plants in In Vivo (CAX 1 형질전환체 벼의 In Vivo에서 주요특성 분석)

  • Kim, Kyung-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.375-383
    • /
    • 2009
  • This study was carried out to develop transgenic rice cultivars with the CAX1 (accession no. U57411) gene. We successfully selected the transgenic rice plants over-expressing the Arabidopsis H+/$Ca^{2+}$ antiporter CAX1 (accession no. U57411) gene in T6 generation. The brown rice of the CAX1 expressing rice contained 13.4~68.0 % more calcium $(Ca^{2+})$ than that of the wild type and 5 lines were selected based on the phenotypes compared to the control cultivar at the GMO field. The CAX1 expressing transgenic rice plants were similar in phenotype to the wild type during the whole growth period. Also these selected 4 lines appeared to be resistant to blast, cold and water solution compared with the wild type. Difference in 1,000 grain weight of brown rice was observed among each line but grain shape did not show any morphological alternations. These results suggest the enhanced Ca-substrate specificity of CAX1 exchanger in donor plant. Therefore, intact CAX1 exchanger can be functionally useful for $Ca^{2+}$ nutrient enrichment of rice with reduced accumulation of undesirable cation.

Effect of Developmental Stages on Glucosinolate Contents in Kale (Brassica oleracea var. acephala) (생장단계에 따른 케일 내 글루코시놀레이트 함량)

  • Lee, Heon-Hak;Yang, Si-Chang;Lee, Min-Ki;Ryu, Dong-Ki;Park, Suhyoung;Chung, Sun-Ok;Park, Sang Un;Lim, Yong-Pyo;Kim, Sun-Ju
    • Horticultural Science & Technology
    • /
    • v.33 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The aim of this study was to investigate the amounts of glucosinolates (GSL) in kale at various development stages. Kale varieties 'Manchoo Collard' and 'TBC' were cultivated from 20 February 2012 to 3 July 2013 in the greenhouse at Chungnam National University. During the cultivation periods, samples were harvested at 35, 63, 91, 105, 119, and 133 days after sowing (DAS) and the amount of GSL quantified by HPLC. Ten types of GSL (progoitrin, sinigrin, glucoalyssin, gluconapin, glucoiberverin, 4-hydroxyglucobrassicin, glucobrassicin, 4-methoxyglucobrassicin, gluconasturtiin, and neoglucobrassicin) were observed in 'TBC', whereas nine types of GSL (the same as above, except glucoiberverin) were identified in 'Manchoo Collard'. The amount of total GSL in 'Manchoo Collard' was comparatively higher at 133 DAS (mean $8.64{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($1.16{\mu}mol{\cdot}g^{-1}$ dry weight, DW) of cultivation. In the case of 'TBC', the amount of GSL was higher at 91 DAS (mean $13.41{\mu}mol{\cdot}g^{-1}$) and lower at 35 DAS ($0.31{\mu}mol{\cdot}g^{-1}$ dry weight, DW). Sinigrin was the most abundant GSL (57% of total GSL) in 'Manchoo Collard' at 133 DAS and was also highest (44%) in 'TBC' at 91 DAS. Together, progoitrin, sinigrin, glucobrassicin, and gluconasturtiin, the precursor of crambene, allylisothiocyanate, indol-3-cabinol, and phenethylisothiocyanate accounted for 94 and 78% of GSL in 'Manchoo Collard' and 'TBC', respectively. Our results demonstrate that the amounts of GSL, which have potential anti-carcinogenic activity, change during development in kale.

Development of a marker system to discern the flowering type in Brassica rapa crops (배추 속 작물의 개화형 판별 마커 시스템 개발)

  • Kim, Jin A;Kim, Jung Sun;Hong, Joon Ki;Lee, Yeon-Hee;Lee, Soo In;Jeong, Mi-Jeong
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.438-447
    • /
    • 2017
  • Flowering is one of the most important development traits related to the production of Brassica rapa crops. After planting, a sudden low temperature triggers premature flowering, which leads to a reduction in the yield and quality of harvested production. Therefore, understanding the mechanism of flowering control is important in the agricultural productivity for preventing Brassica rapa crops. Vernalization is generally known as the main factor of flowering in the Brassica plant. However, in the subspecies of Brassica rapa, some accession such as Yellow sarson and Komatsuna display the flowering phenotype without vernalization. Circadian genes, which diurnally regulate plant physiology, have a role for photoperiodic flowering but are related to the regulation of the vernalizarion mechanism. In this report, the 22 B. rapa accession were divided into two groups, vernalization and non-vernalization, and the sequenced circadian gene, BrPRR1s. Among them, the BrPRR1b gene was found to have deletion regions, which could classify the two groups. The PCR primer was designed to amplify a short band of 422bp in the vernalization type and a long band of 451bp in the non-vernalization type. This primer set was applied to distinguish the flowering types in the 43 B. rapa accession and 4 Brassica genus crop, Broccoli, cabbage, mustard, and rape. The PCR analysis results and flowering time information of each crop demonstrated that the primer set can be used as marker to discern the flowering type in Brassica crops. This marker system can be applied to the B. rapa breeding when selecting the flowering character of new progenies or introducing varieties at an early stage. In addition, these results displayed that the circadian clock genes can be a good strategy for the flowering control of B. rapa crops.

Interspecific Competition of Paddy Rice Isogenic Lines in Plant Type with Some Perennial Weeds (수도초형(水稻草型)의 Isogenic Line과 다년생(多年生) 잡초(雜草)의 경합특성(競合特性) 연구(硏究))

  • Kim, I.K.;Guh, J.O.;Kwon, S.L.
    • Korean Journal of Weed Science
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 1983
  • By use of three paddy rice lines as the near-isogenic in plant type (Broom, Open, and Spread type in tillering angle), the interspecific competition patterns of rice plants with three important weed species (Cyperus serotinus, Eleocharis kuroguwai, and Potamogeton distinctus) under the three densities of weed standing (0.25 and 50 percent of the rice plants), were observed. Under the experimented conditions, paddy yields were varied more significantly with weed competition descriptions than with plant types of paddy rice. And spread typed rice was more competitive to the detected weed species, however, the broom and spread typed rice were to Potamogeton SP, among others. The result of the clustering analysis of crop-weed competition patterns, estimated by 1-Q mode correlation coefficients, indicated that the first-order component affecting the competition patterns of crop-weed was rather the plant types of rice than either weed species or weed standing densities.

  • PDF

Analysis on Practicality of Seed Treatments for Medicinal Plants Published in Korean Scientific Journals (국내 학술지에 발표된 약용작물 종자처리의 실용성 분석)

  • Kang, Jin-Ho;Yoon, Soo-Young;Jeon, Seung-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.4
    • /
    • pp.328-341
    • /
    • 2004
  • Presowing seed treatments used to enhance the rates of germination and afterward seedling emergence have not occasionally shown the same rate in indoor and field. The treatments considering germination mechanism and factors affecting germination must be totally included in indoor experiments so that the results drawn can be reproduced in the field. Seed germination is controlled by Phytochrome-mediated action changed with composition rates of red and far-red lights. Sunlight can penetrate soil into $6{\sim}9\;mm$ depth, which in turn means that seeds having $2{\sim}3\;mm$ in their width may receive the light if soil was covered 3 times over them. The penetrating light, moreover, turns to more far-red light than red light reverse to the sunlight. For germination tests after the artificial presowing seed treatments, therefore, seeds of smaller than 2 mm (< 2 mm), $2{\sim}3\;mm$, and larger than 3 mm (> 3 mm) must be done with incandescent lamp (IL) having more far-red light, with IL or in darkness, and in darkness, respectively. The 96 papers published in 13 Korean scientific journals up to the end of 2003 were analysed on the basis of the above explanation. 91 species were used 147 times as experimental materials; 101 times for < 2 mm seeds, 24 times for $2{\sim}3\;mm$ seeds and 22 times for > 3 mm seeds. If they were analysed as the light sources used for germination tests, correct applications reached more and less than 60% in both $2{\sim}3\;mm$ and > 3 mm seeds but 23% in < 2 mm seeds, conclusionally meaning that when the experimental results in the scientific papers were applied into farming practices, care was taken of their application because most of medicinal plant seeds were very small.

Environmental Impact Assessment of Rapeseed Cultivation by Life Cycle Assessment (전과정평가를 이용한 유채재배의 환경영향 평가)

  • Hong, Seung-Gil;Nam, Jae-Jak;Shin, Joung-Du;Ok, Yong-Sik;Choi, Bong-Su;Yang, Jae-E.;Kim, Jeong-Gyu;Lee, Sung-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • BACKGROUND: High input to the arable land is contributed to increasing productivity with causing the global environmental problems at the same time. Rapeseed cultivation has been forced to reassess its positive point for utilization of winter fallow field. The Objective of this study was performed to assess the environmental impact of rapeseed cultivation with double-cropping system in paddy rice on Yeonggwang district using life cycle assessment technique. METHODS AND RESULTS: For assessing each stage of rapeseed cultivation, it was collected raw data for input materials as fertilizer and pesticide and energy consumption rate by analyzing the type of agricultural machinery and working hours by 1 ton rapeseed as functional unit. Environmental impacts were evaluated by using Eco-indicator 95 method for 8 impact categories. It was estimated that 216 kg $CO_2$-eq. for greenhouse gas, 3.98E-05 kg CFC-11-eq. for ozone lazer depletion, 1.78 kg SO2-eq. for acidification, 0.28 kg $PO_4$-eq. for eutrophication, 5.23E-03 kg Pb-eq. for heavy metals, 2.51E-05 kg B(a)p-eq. for carcinogens, 1.24 kg SPM-eq. for smog and 6,460 MJ LHV for energy resource are potentially emitted to produce 1 ton rapeseed during its whole cultivation period, respectively. It was considered that 90% of these potential came from chemical fertilizer. For the sensitivity analysis, by increasing the productivity of rapeseed by 1 ton per ha, potential environmental loading was reduced at 22%. CONCLUSION(s): Fertilization affected most dominantly to the environmental burden, originated from the preuse stage, i.e. fertilizer manufacturing and transporting. It should be included and assessed an indirect emission, which is not directly emitted from agricultural activities. Recycling resource in agriculture with reducing chemical fertilizer and breeding the high productive variety might be contribute to reduce the environmental loading for the rapeseed cultivation.

Comparison of Immune modulatary and Anticancer Activities according to the Parts of the Styrax japonica Sieb. et Zucc. (때죽나무의 부위별 면역 및 항암활성 비교)

  • Kwon, Oh-Woung;Kim, Cheol-Hee;Kim, Hyo-Sung;Kwon, Min-Chul;Ahn, Ju-Hee;Lee, Hak-Ju;Kang, Ha-Young;Lee, Hyeon-Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.15 no.3
    • /
    • pp.170-176
    • /
    • 2007
  • This study was performed to anticancer activities and immune modulatary activities according to the parts of the S. japonica Sieb. et Zucc. The cytotoxicity on human kidney cell (HEK 293) was showed below 27.4% in adding the methanol extracts. The anticancer activity were increased in over 60% by barks extracts in AGS and MCF-7 cells. The immune cell growth using human immune B and T cells was improved by the barks extracts of S. japonica Sieb. et Zucc. in adding 1.0mg/ml concentration. The secretion of the IL-6 and TNF-${\alpha}$ from human immune B and T cells was showed secretion for the amount of cytokines by bark extracts of S. japonica Sieb. et Zucc. NK cell growth was increased against control all of the extracts of S. japonica Sieb. et Zucc. Densitometric analysis of Bcl-2 revealed that possible to decrease potentialities of taking cancer in adding of extracts from S. japonica Sieb. et Zucc. From the results, the roots and barks extracts of S. japonica Sieb. et Zucc. were showed useful biological activities.

Estimated EC by the Total Amount of Equivalent Ion and Ion Balance Model (등가 이온 총량에 따른 EC 추정과 이온 균형 모형)

  • Soh, Jae-Woo;Lee, Yong-Beom
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.694-699
    • /
    • 2012
  • To examine the EC model in a culture medium, basic culture medium of Rush (2005) and EC model of Robinson and Strokes (1959) were applied analyzing the equivalence ion total amount, the EC variable of cation and anion. Following the experiential translation by Steiner (1980), 130 optimized domestic and foreign culture media for crop growth were utilized, and estimated EC model was also demonstrated. Results from basic culture medium of Rush (2005) suggests an estimated EC by equivalence ion total amount and high reliable regressive model with 0.96 y = 1.33x - 0.23 of 0.96 as value $R^2$. It was found out that the change in concentration of positive ion and anion did not differ significantly with the increase and decrease of EC, however, there occurred a slight variable range. The change brings about a bigger anion influence than the previously reported positive ion, seemingly like those based on nitride ion and sulfur ion. The above EC estimated models confirmed that with optimized 130 domestic and foreign culture media for crop growth, the value derived will be as follows: $R^2$ = 0.98 with y = 1.23x - 0.02. In addition, the contour analysis of positive ion and anion for EC, with popularly known concentration range of EC $1.5-2.5dS{\cdot}m^{-1}$ reveals an equivalent of more than $11meq{\cdot}L^{-1}$ for positive ion and $15meq{\cdot}L^{-1}$ for anion. On the other hand, the left bottom, low concentration $1.5dS{\cdot}m^{-1}$ and the right above, high concentration $2.5dS{\cdot}m^{-1}$, for both positive ion and anion existed differently in a proper culture medium concentration. This study adapted variables of both positive ion and anion of EC simultaneously, unlike in the previous culture medium by ion ratio in mutual ratio of Steiner (1980), and offers an EC model that can estimate levels or positive ion and anion in proper concentration, EC $1.5-2.5dS{\cdot}m^{-1}$, with distributed features of ions.

Effects of Initial Defoliation Stage and Defoliation Interval on the Growth of White Clover Cultivars Differing in Leaf Size (최초예취시간 및 예취간격이 엽의 크기가 다른 White Clover 품종들의 생장에 미치는 영향)

  • 강진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.264-273
    • /
    • 1992
  • Availability of white clover (Trifolium repens L.) has been limited due to its poor introduction to swards and lack of persistence under improper grazing management. This experiment was conducted to determine the effects of initial defoliation stage and defoliation interval on the growth of white clover varieties. Individual plants of Regal (large leaf), Louisiana S.1 (medium-large leaf), Grasslands Huia (medium-small leaf) and S184 (small leaf) were grown in containers (4.5 $\times$ 13.5 cm) containing a 1:2:1 soil:sand:Promix until reaching to the stage of 1, 4, or 8 trifoliolates, and then clipped to remove all fully expanded leaves every 7 or 28 days (d). For analysis of morphological parameters, plants were sampled on the final harvest date (0 d), and 7, 14, 21, and 28 d after the final harvest date. Harvested dry weight (dw) of all varieties declined as defoliation interval declined or initial defoliation was made earlier. That of Regal was the highest as initial defoliation was delayed. On the 7 d regrowth shoot and root dw were increased as initial defoliation was delayed or interval lengthened, whereas on the 28 d regrowth the trend was alleviated. Root dw and biomass of Regal were higher than the other varieties during the whole regrowing period, when the increase of biomass resulted from that of shoot dw. Leaf areas and petiole lengths of all varieties declined under 7 d defoliation interval. The area and the length declined with earlier initial defoliation on the 7 d regrowth but not on the 28 d regrowth. Stolon length and growing tips of S184 were the highest and increased more steeply during regrowth, while those of Regal were the lowest and did slightly. It is concluded that the continuous defoliation and the first defoliation at earlier growth stage have detrimental effects on growth of white clover, although larger leaf types are more productive but less persistent in a sward than smaller leaf types.

  • PDF

Diversity and Geographical Relationships by SSR Marker in Subgenus Soja Originated from Korea (SSR 마커에 의한 한국 원산 Soja 아속의 다양성과 지리적 유연관계)

  • Cho Yang-Hee;Yoon Mun-Sup;Lee Jeong-Ran;Baek Hyung-Jin;Kim Chang-Yung;Kim Tae-San;Cho Eun-Gi;Lee Hee-Bong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.3
    • /
    • pp.239-247
    • /
    • 2006
  • This study was carried out to investigate polymorphism, gene diversity, and geographical relationships of 81 Korean wild (Glycine soja) and 130 cultivated soybeans (G. max) using seven simple sequence repeat (SSR) markers. A total of 144 alleles were observed in 211 accessions with an average of 20.6. Each SSR loci showed 13 (Satt532) to 41 (Sat_074) multialleles. The range of alleles within the loci was wider in wild soybean than the cultivated soybeans. The average genetic diversity values were 0.88 and 0.69 in wild and cultivated soybeans, respectively. In a scatter diagram of wild and cultivated soybeans based on canonical discriminant analysis, CAN1 accounted for 84.2% while CAN2 did 8.5%. Two species were grouped into three: group I (G. max), group II (G. soja), and group III (complex of G. max and G. soja). The geographical relationships of wild soybean were distinguished into two groups: Gyeonggi for Group I, and Gyeongsang, Jeolla, Gangwon, and Chungcheong for Group II. Those of cultivated soybeans were distinguished into Gyeonggi, Gangwon, and Gyeongsang for Group I, and Jeolla and Chungcheong for Group II. Therefore, the geographical relationships of wild soybeans were well typified based on the ecosystems of the Korean peninsula.