DOI QR코드

DOI QR Code

Estimated EC by the Total Amount of Equivalent Ion and Ion Balance Model

등가 이온 총량에 따른 EC 추정과 이온 균형 모형

  • Soh, Jae-Woo (Department of Horticultural Environment, National Institute of Horticultural & Herbal Science) ;
  • Lee, Yong-Beom (Department of Environmental Horticulture, University of Seoul)
  • 소재우 (국립원예특작과학원 원예특작환경과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Received : 2012.07.28
  • Accepted : 2012.08.16
  • Published : 2012.12.31

Abstract

To examine the EC model in a culture medium, basic culture medium of Rush (2005) and EC model of Robinson and Strokes (1959) were applied analyzing the equivalence ion total amount, the EC variable of cation and anion. Following the experiential translation by Steiner (1980), 130 optimized domestic and foreign culture media for crop growth were utilized, and estimated EC model was also demonstrated. Results from basic culture medium of Rush (2005) suggests an estimated EC by equivalence ion total amount and high reliable regressive model with 0.96 y = 1.33x - 0.23 of 0.96 as value $R^2$. It was found out that the change in concentration of positive ion and anion did not differ significantly with the increase and decrease of EC, however, there occurred a slight variable range. The change brings about a bigger anion influence than the previously reported positive ion, seemingly like those based on nitride ion and sulfur ion. The above EC estimated models confirmed that with optimized 130 domestic and foreign culture media for crop growth, the value derived will be as follows: $R^2$ = 0.98 with y = 1.23x - 0.02. In addition, the contour analysis of positive ion and anion for EC, with popularly known concentration range of EC $1.5-2.5dS{\cdot}m^{-1}$ reveals an equivalent of more than $11meq{\cdot}L^{-1}$ for positive ion and $15meq{\cdot}L^{-1}$ for anion. On the other hand, the left bottom, low concentration $1.5dS{\cdot}m^{-1}$ and the right above, high concentration $2.5dS{\cdot}m^{-1}$, for both positive ion and anion existed differently in a proper culture medium concentration. This study adapted variables of both positive ion and anion of EC simultaneously, unlike in the previous culture medium by ion ratio in mutual ratio of Steiner (1980), and offers an EC model that can estimate levels or positive ion and anion in proper concentration, EC $1.5-2.5dS{\cdot}m^{-1}$, with distributed features of ions.

본 시험은 배양액 내 EC 모형을 구명하기 위해 Rush(2005)의 기본 배양액을 설계하여 Robinson and Strokes(1959)의 등가이온총량에 따라 EC 모형을 추정하고, 양이온과 음이온 및 무기이온간의 EC 변량에 대하여 분석하였다. Steiner(1980)의 경험적 해석을 위해 작물 생육에 최적화된 국내외 130종 배양액을 사용하여 EC 추정 모형을 실증하였다. Rush(2005)의 기본 배양액을 등가이온총량으로 EC 추정한 결과 $R^2$ 값 0.96의 y = 1.33x - 0.23의 신뢰성 높은 회귀모형을 추정하였다. 양이온과 음이온의 농도 변화가 EC의 증감 변화와 일치하지만 그 평면적으로 변화하지 않고 변량폭을 보였다. 그 변화는 기존에 보고된 양이온의 영향보다 음이온의 영향이 더 큰 것으로 나타났는데, 질소 이온과 황이온에 기인한 것으로 생각된다. 이상의 EC 추정 모형을 작물 생육이 최적화된 국내외 130종의 배양액을 이용하여 재확인하였는데, $R^2$ = 0.98의 y = 1.23x - 0.02를 나타냈다. 또한 EC에 대한 양이온과 음이온의 contour 분석에서 적정 배양액 농도 범위로 알려진 EC $1.5-2.5dS{\cdot}m^{-1}$는 양이온 $11meq{\cdot}L^{-1}$ 이상, 음이온 $15meq{\cdot}L^{-1}$ 이상인 것으로 나타났다. 좌측 하단의 $1.5dS{\cdot}m^{-1}$ 저농도와 우측 하단의 $2.5dS{\cdot}m^{-1}$ 고농도에서 타원형 분포를 나타내어 적정 배양액 농도 범위에서 양이온과 음이온은 다양하게 분포하는 것으로 나타났다. 본 연구는 Steiner(1980)의 mutual ratio에서 이온 간 함량 비율에 의한 배양액 설계와 달리 EC에 대한 양이온과 음이온의 변량을 동시에 적용함으로써 이온간의 분포 특성과 적정 배양액 농도 EC $1.5-2.5dS{\cdot}m^{-1}$의 양이온과 음이온의 수준을 추정할 수 있는 EC 모형을 제시하였다.

Keywords

References

  1. Adams, F. 1977. Ionic concentration and activity in soil solution. Soil Sci. Soc. Amer. Proc. 35:420-426.
  2. Ahn, T.I., J.W. Shin, and J.E. Son. 2010. Analysis of changes in ion concentration with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). J. Bio-Env. Con. 19:298-304.
  3. Bando, K., H. Machida, and H. Kodo. 1988. Establishment of the productive techniques of rock wool culture on tomatoes. Effect of nutrient concentration on the quality and yield of tomato in circular solution culture. Bull. Tokushima Agric. Exp. Stn. 25:27-35.
  4. Bando, K. 1991. Recirculating rockwool culture of tomato. Agr. Hort. 66:61-66.
  5. Benoit, F. 1992. Practical guide for simple soilless culture techniques. European Vegatable R & D Center, Belgium. p. 28-37.
  6. Chung, S.J., B.S. Seo, and B.S. Lee. 1991. Studies on the levels of nitrogen, potassium and its interaction on the growth and development of hydroponically growth tomato. Proc. Kor. Soc. Bio-Env. Con. Conf. 10:70-71.
  7. De Kreij, C., W. Voogt, and R. Baas. 1999. Nutrient solutions and water quality for soilless cultures, Brochure 196. Research Station for Floriculture and Glasshouse Vegetables (PBG), Naaldwijk, The Netherlands.
  8. Ishihara, Y., H. Hitomi, and Y. Yamaki. 2006. Effect of nutrient composition used in the closed hydroponics system with capillary uptake method on nutrient element concentrations in the organic substrates and yield of tomato. Hort. Res. 5:265-270. https://doi.org/10.2503/hrj.5.265
  9. Masuda, M., T. Takiguchi, and S. Matsubara. 1989. Yield and quality of tomato fruits, and changes of mineral concentration in different strengths of nutrient solution. J. Japan. Soc. Hort. Sci. 58:641-648. https://doi.org/10.2503/jjshs.58.641
  10. Robinson, R.A. and R.H. Stokes. 1959. Electrolyte solutions. Courier Dover Publications, London.
  11. Roh, M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae. 1997. Development of nutrient solution suitable for closed system in substrate culture of cucumber. J. Bio-Env. Con. 6:1-14.
  12. Roh, M.Y., G.L. Choi, H.C. Rhee, T.C. Seo, W.S. Kim, and Y.B. Lee. 2009. Changes in nutrient element concentrations and growth of cucumber plants (Cucumis sativus L. cv. Joeun Baegdadagi) as affected by nutrient solution composition in recirculating hydroponic systems. J. Bio-Env. Con. 18:363-369.
  13. Ryu, K.H. 1993. Measurement on nutrient solution. J. Bio. Fac. Env. 2:147-149.
  14. Soh, J.W. and Y.B. Lee. 2000. Development of calculation program and control of nutrient minerals in the plant factory for lettuce. Kor. J. Hort. Sci. Technol. 18:146. (Abstr.)
  15. Son, J.E. and T. Okuya. 1991. Prediction of electrical conductivity of nutrient solution in hydroponics. J. Agr. Met. 47: 159-163. https://doi.org/10.2480/agrmet.47.159
  16. Sonneveld, C. 1993. Hydroponic growing in closed systems to safeguard the environment. Australia Hydroponic Conf. Hydroponics Environ. Monash University Melbourne Australia 17-19. Feb. p. 21-36.
  17. Sonneveld, C. 2000. Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture. Ph.D. Thesis. University of Wageningen, The Netherlands.
  18. Sonneveld, C. 2002. Composition of nutrient solutions, p. 179-210. In: D. Savvas and H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Embryo publication, Athens, Greece.
  19. Steiner, A.A. 1980. The selective capacity of plants for ions and its importance for the composition and treatment of the nutrient solution. Acta Hort. 98:87-97.
  20. Tanji, K.K. 1960. Predicting specific conductance from electrolytic properties and ion association in some aqueous solution. Soil Sci. Soc. Amer. Proc. 33:887-889.
  21. Yamazaki, K. 1982. Management of pH in nutrient solution in hydroponics. Agri. Hort. 57:711-717.
  22. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Amer. Soc. Hort. Sci. 121:1082-1088.

Cited by

  1. pH Variance Model Depending on Phosphate Ion Form vol.33, pp.6, 2015, https://doi.org/10.7235/hort.2015.15058