• Title/Summary/Keyword: critical theory

Search Result 1,506, Processing Time 0.037 seconds

Swerve, Trope, Peripety: Turning Points in Criticism and Theory

  • Tally, Robert T. Jr.
    • Journal of English Language & Literature
    • /
    • v.64 no.1
    • /
    • pp.25-37
    • /
    • 2018
  • The turning point is one of the more evocative concepts in the critic's arsenal, as it is equally suited to the evaluation and analysis of a given moment in one's day as to those of a historical event. But how does one recognize a turning point? As we find ourselves always "in the middest," both spatially and temporally, we inhabit sites that may be points at which many things may be seen to turn. Indeed, it is usually only possible to identify a turning point, as it were, from a distance, from the remove of space and time which allows for a sense of recognition, based in part on original context and in part of perceived effects. In this article, Robert T. Tally Jr. argues that the apprehension and interpretation of a turning point involves a fundamentally critical activity. Examining three models by which to understand the concept of the turning point-the swerve, the trope, and peripety (or the dialectical reversal)-Tally demonstrates how each represents a different way of seeing the turning point and its effects. Thus, the swerve is associated with a point of departure for a critical project; the trope is connected to continuous and sustained critical activity in the moment, and peripety enables a retrospective vision that, in turn, inform future research. Tally argues for the significance of the turning point in literary and cultural theory, and concludes that the identification, analysis, and interpretation of turning points is crucial to the project of criticism today.

Bubble Nucleation in Polymer Solutions (고분자 용액에서의 기포 형성)

  • 강성린;김기영;곽호영
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.51-58
    • /
    • 2004
  • The molecular cluster model for the homogeneous bubble nucleation rather than the classical nucleation theory was extended to predict the bubble nucleation events in elastomers(cross-linked polymers), polymers and polymer which are dissolved in the organic solvent. The classical theory assumes the formation of the critical bubble while the molecular cluster model assumes the critical cluster as for the initiation of the bubble nucleation. For the bubble nucleation in elastomers and polymers, the strain energy overcome by a critical bubble was also considered. The calculation results for the number of bubbles nucleated in elastormers and polymer solutions, which are about 10$\^$8/∼10$\^$12/ bubbles/㎤ are in good agreement with observed ones.

Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model

  • Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2001-2006
    • /
    • 2009
  • Temperature dependence of the critical micelle concentration (CMC), $x_{CMC}$, in micellization can be described by ln $x_{CMC}$ = A + BT + C lnT + D/T, which has been derived statistical-mechanically. Here A, B, C, and D are fitting parameters. The equation fits the CMC data better than conventionally used polynomial equations of temperature. Moreover, it yields the unique(exponent) value of 2 when the CMC is expressed in a power-law form. This finding is quite significant, because it may point to the universality of the thermal behavior of CMC. Hence, in this article, the nature of the equation ln $x_{CMC}$ = A + BT + C lnT + D/T is examined from a lattice-theory point of view through the Flory-Huggins model. It is found that a linear behavior of heat capacity change of micellization is responsible for the CMC equation of temperature.

Effects of Crack on Stability Timoshenko Beam Subjected to Follower Force (종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.344-347
    • /
    • 2007
  • In this paper, the stability of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Timoshenko beam theory. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical follower force for flutter is proportional to the crack depth.

  • PDF

A Study on the Kenneth Frampton's Contribution to Architectural Phenomenology (케네스 프램턴이 건축 현상학에 끼친 영향)

  • Chung, Tae-Yong
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.5
    • /
    • pp.75-82
    • /
    • 2017
  • The aim of this study is to find phenomenological characteristics in the background and contents of Kenneth Frampton's architectural theories and their contribution to architectural phenomenology. His theories reflect on the interpretations of Modern architecture synchronically and diachronically. This difference makes Frampton have more concrete direction for architectural phenomenology. Hanna Arendt, who contribute to form Frampton's architectural theory, introduced various concepts of Heidegger's phenomenology to Frampton. And criticism of image centered late capitalism also act as a background for Frampton to relate to phenomenology. Frampton emphasized the importance of 'critical regionalism' and 'tectonic' as a poetics of construction as the resistance of globalization. All of these have relations to 'place' and 'perception' that are main themes of phenomenology. Frampton explains his theory with phenomenological terms and above all things, he assimilates concerns of architectural phenomenology with critical thinking. In these aspects, his theories can be recognized as playing an important role to the development of architectural phenomenology.

A Study on the Critical Speed of Railway Vehicles (철도차량의 임계속도에 관한 연구)

  • Jeong, U-Jin;Kim, Seong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1991-1999
    • /
    • 2000
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger car having a bolster. Since linear analysis can not explain them, bifurcation analysis is used to predict its outbreak velocities in this paper. However bifurcation analysis is attended with huge computing time, thus this research proposes more effective numerical algorithm to reduce it than previous researches. Stability of periodic solution is obtained by adapting of Floquet theory while stability of equilibrium solutions is obtained by eigen-value analysis. As a result, linear and nonlinear critical speed are acquired. Full scale roller rig test is carried out for the validation of the numerical result. Finally, it is certified that there are many similarities between numerical and test results.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support (중간 지지된 유체 유동 외팔형 원통셸의 임계유속)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

Determination of Frequency Independent Critical Concentration of Xathan and Carob Mixed Gels

  • Yoon, Won-Byong;Gunasekaran, Sundaram
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.1069-1071
    • /
    • 2007
  • The frequency independent critical concentration (Cc) of xanthan and carob (X/C) mixed gel was determined based on the Winter-Chambon's theory. X/C mixed (X/C=1:1 ratio) gels were prepared from 0.1 to 1% of concentration. The linear viscoelastic properties, i.e., storage and loss modulus, of X/C mixed gel at $20^{\circ}C$ were measured by frequency sweep tests. The frequency independence of tangent function of phase angle (tan ${\delta}$) of X/C mixed gels was graphically determined from the intersection of the plot of phase angle against concentration at varied frequencies. The intersection (C=0.43%) was considered to be Cc of X/C mixed gel.

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.