Browse > Article
http://dx.doi.org/10.12989/acd.2020.5.3.209

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads  

Akbulut, Mustafa (TUBITAK Marmara Research Center)
Sarac, Abdulhamit (TUBITAK National Metrology Institute)
Ertas, Ahmet H. (Department of Mechanical Engineering, Faculty of Engineering & Natural Sciences, Bursa Technical University)
Publication Information
Advances in Computational Design / v.5, no.3, 2020 , pp. 209-231 More about this Journal
Abstract
In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.
Keywords
Benchmarking; Heuristic optimization algorithms; structural optimization; laminated composites; buckling load; fundamental frequencies;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ertas, A.H. and Sonmez, F.O. (2011), "Design optimization of composite structures for maximum strength using direct simulated annealing", P. I. Mech. Eng. C-J. Mec., 225(1), 28-39. https://doi.org/10.1243/09544062JMES2105.   DOI
2 Ertas, A.H. and Sonmez, F.O. (2010), "Design of fiber reinforced laminates for maximum fatigue life", Procedia Eng., 2(1), 251-256. https://doi.org/10.1016/j.proeng.2010.03.027.   DOI
3 Fabro, A.T., Meng, H., Chronopoulos, D., Maskery, I. and Chen, Y. (2020), "Optimal design of rainbow elastic metamaterials", Int J Mech Sci, 165, Article Number: 105185. https://doi.org/10.1016/j.ijmecsci.2019.105185.
4 Fazzolari, F.A. and Carrera, E. (2011), "Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates", Compos. Struct., 94(1), 50-67. https://doi.org/10.1016/j.compstruct.2011.07.018.   DOI
5 Ferreira, A.J.M., Roque, C.M.C., Neves, A.M.A., Jorge, R.M.N., Soares, C.M.M. and Liew, K.M. (2011), "Buckling and vibration analysis of isotropic and laminated plates by radial basis functions", Composites Part B, 42(3), 592-606. https://doi.org/10.1016/j.compositesb.2010.08.001.   DOI
6 Ghashochi-Bargh, H. and Sadr, M.H. (2012), "Stacking sequence optimization of composite plates for maximum fundamental frequency using particle swarm optimization algorithm", Meccanica, 47(3), 719- 730. https://doi.org/10.1007/s11012-011-9482-5.   DOI
7 Ghashochi-Bargh, H. and Sadr, M.H. (2014), "PSO algorithm for fundamental frequency optimization of fiber metal laminated panels", Struct. Eng. Mech., 47(5), 713-727. http://dx.doi.org/10.12989/sem.2013.47.5.713.   DOI
8 Gibson, R.F. (1994), Principles of Composite Material Mechanics, McGraw-Hill Inc., Singapore.
9 Goldfeld, Y., Arbocz, J. and Rothwell, A. (2005), "Design and optimization of laminated conical shells for buckling", Thin Wall Struct, 43(1), 107-133. https://doi.org/10.1016/j.tws.2004.07.003.   DOI
10 Haftka, R.T. and Walsh, J.L. (1992), "Stacking sequence optimization for buckling of laminated plates by integer programming". AIAA J., 30(3), 814-819. https://doi.org/10.2514/3.10989.   DOI
11 Hasancebi, O., Carba, S. and Saka, M. (2010), "Improving the performance of simulated annealing in structural optimization", Struct. Multidiscip. Optim, 41(2), 189-203. https://doi.org/10.1007/s00158-009-0418-9.   DOI
12 Karakaya, S. and Soykasap, O. (2009), "Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm", Struct. Multidiscip. Optim., 39, 477-486. https://doi.org/10.1007/s00158-008-0344-2.   DOI
13 Holland, J.H. (1992), Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cabridge, MA, USA.
14 Kam, T.Y. and Chang, R.R. (1993), "Design of laminated composite plates for maximum buckling load and vibration frequency",. Comput. Methods Appl. Mech. Eng., 106(1-2), 65-81. https://doi.org/10.1016/0045-7825(93)90185-Z.   DOI
15 Kang, B.K., Park, J.S. and Kim, J.H. (2008), "Analysis and optimal design of smart skin structures for buckling and free vibration", Compos. Struct., 84(2), 177-185. https://doi.org/10.1080/01495739.2011.601261.   DOI
16 Kayikci, R. and Sonmez, F.O. (2012), "Design of composite laminates for optimum frequency response",. J. Sound Vib.; 331(8), 1759-1776. https://doi.org/10.1016/j.jsv.2011.12.020.   DOI
17 Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of the fourth IEEE International Conference on Neural Networks, 1942-1948. https://doi.org/10.1109/ICNN.1995.488968.
18 Khani, A., Abdalla, M.M. and Gurdal, Z. (2012), "Circumferential stiffness tailoring of general cross section cylinders for maximum buckling load with strength constraints", Compos. Struct., 94(9), 2851-2860. https://doi.org/10.1016/j.compstruc.2012.04.018.   DOI
19 Kogiso, N., Watson, L.T., Gurdal, Z. and Haftka, R.T. (1994), "Genetic algorithm with local improvement for composite laminate design", Struct. Multidiscip. Optim, 7(4), 207-218. https://doi.org/10.1007/BF01743714.   DOI
20 Kirkpatrick, Jr.S., Gelatt, C. and Vecchi, M. (1983), "Optimisation by simulated annealing", Science, 220(6), 498-516.   DOI
21 Le Riche, R. and Haftka, R.T. (1993), "Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm", AIAA J., 31(5), 951-956. https://doi.org/10.2514/3.11710.   DOI
22 Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruc.2015.03.019.   DOI
23 Lindgaard, E. and Lund, E. (2011), "A unified approach to nonlinear buckling optimization of composite structures", Comput. Struct., 89(3-4), 357-370. https://doi.org/10.1016/j.compstruc.2010.11.008.   DOI
24 Lund, E. (2009), "Buckling topology optimization of laminated multi-material composite shell structures", Compos. Struct., 91(2), 158-167. https://doi.org/10.1016/j.compstruc.2009.04.046.   DOI
25 Mark, W., Bloomfield, J., Enrique, H. and Weaver, P. M. (2010), "Analysis and benchmarking of meta-heuristic techniques for lay-up optimization", Comput. Struct., 88(5-6), 272-282. https://doi.org/10.1016/j.compstruct.2009.10.007.   DOI
26 Massey, F.J. (1951), "The Kolmogorov-Smirnov test for goodness of fit", J. Am. Stat. Assoc., 46(253), 68- 78. https://doi.org/10.1080/01621459.1951.105007   DOI
27 Narita, Y. and Zhao, X. (1998), "An optimal design for the maximum fundamental frequency of laminated shallow shells", Int. J. Solids Struct., 35(20), 2571-2583. https://doi.org/10.1016/S0020-7683(97)00179-0.   DOI
28 Razali, N.M. and Wah, Y.B. (2011), "Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests", J. Stat. Model. Anal., 2(1), 21-33.
29 Ovesy, H.R. and Fazilati, J. (2012), "Buckling and free vibration finite strip analysis of composite plates with cutout based on two different modeling approaches", Compos. Struct., 94(3), 1250-1258. https://doi.org/10.1016/j.compstruct.2011.11.009.   DOI
30 Parsopoulos, K.E. and Vrahatis, M.N. (2002), "Particle swarm optimization method in multi-objective problems", Proceedings of the 2002 ACM Symposium on Applied Computing, 603-607. https://doi.org/10.1145/508791.508907.
31 Razvan, C. (2016), "Comparison between the performance of GA and PSO in structural optimization problems", Am. J. Eng. Res., 5(11), 268-272.
32 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton, FL, USA.
33 Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for buckling and free vibration analysis of laminated composite and sandwich plates", Compos. Struct., 117(1), 316-332. https://doi.org/10.1016/j.compstruct.2014.05.002.   DOI
34 Shapiro, S.S. and Wilk, M.B. (1965), "An analysis of variance test for normality (complete samples)", Biometrika, 52(3/4), 591-611.https://doi.org/10.2307/2333709.   DOI
35 Shojaee, S., Valizadeh, N., Izadpanah, E., Bui, T. and Vu, T.V. (2012), "Free vibration and buckling analysis of laminated composite plates using the NURBS-based isogeometric finite element method", Compos. Struct., 94(5), 1677-1693. https://doi.org/10.1016/j.compstruct.2012.01.012.   DOI
36 Topal, U. and Uzman, U. (2007), "Optimum design of laminated composite plates to maximize buckling load using MFD method", Thin Wall Struct, 45(7-8), 660-669. https://doi.org/10.1016/j.tws.2007.06.002.   DOI
37 Smerdov, A.A. (2000), "A computational study in optimum formulations of optimization problems on laminated cylindrical shells for buckling II. Shells under external pressure", Compos. Sci. Technol., 60(11), 2067-2076. https://doi.org/10.1016/S0266-3538(00)00103-2.   DOI
38 Soremekun, G., Gurdal, Z., Haftka, R.T. and Watson, L.T. (2001), "Composite laminate design optimization by genetic algorithm with generalized elitist selection", Comput. Struct. 79(2), 131-143. https://doi.org/10.1016/S0045-7949(00)00125-5.   DOI
39 Sun, G (1989), "Practical approach to optimal design of laminated cylindrical shells for buckling", Comp. Sci. Tech., 36(3), 243-253. https://doi.org/10.1016/0266-3538(89)90023-7.   DOI
40 Topal, U. and Ozturk, H.T. (2014), "Buckling load optimization of laminated plates via artificial bee colony algorithm", Struct. Eng. Mech.; 52(4), 755-765. https://doi.org/10.12989/sem.2014.52.4.755.   DOI
41 Walker, M. an dHamilton, R. (2005), "A technique for optimally designing fibre-reinforced laminated plates with manufacturing uncertainties for maximum buckling strength", Eng. Optim., 37(2):135-144. https://doi.org/10.1080/03052150412331298371.   DOI
42 Walker, M. and Hamilton, R. (2005), "A methodology for optimally designing fiber-reinforced laminated structures with design variable tolerances for maximum buckling strength", Thin Wall. Struct., 43(1), 161- 174. https://doi.org/10.1016/j.tws.2004.07.001   DOI
43 Bletzinger, K.U., Bischoff, M. and Ramm, E. (2000), "A unified approach for shear-locking-free triangular and rectangular shell finite elements", Comput. Struct., 75(3), 321-334. https://doi.org/10.1016/S0045-7949(99)00140-6.   DOI
44 Berber, A., Tinkir, M., Gultekin, S. and Celikten, I. (2011), "Prediction of a diesel engine characteristics by using different modeling techniques", J. Phys. Sci., 16, 3979-3992. https://doi.org/10.5897/IJPS10.675.
45 Adali, S. and Duffy, K.J. (1990), "Design of antisymmetric hybrid laminates for maximum buckling load: I. Optimal fibre orientation", Compos. Struct., 14(1), 49-60. https://doi.org/10.1016/0263-8223(90)90058-M.   DOI
46 Walker, M. and Reiss, T. (1998), "Application of MATHEMATICA to the optimal design of composite shells for improved buckling strength", Eng. Comput., 15(2), 260-267. https://doi.org/10.1108/02644409810369248.   DOI
47 Wu, Z., Weaver, P.M., Raju, G. and Kim, B.C. (2012), "Buckling analysis and optimisation of variable angle tow composite plates", Thin-Walled Struct., 60:163-172. https://doi.org/10.1016/j.tws.2012.07.008.   DOI
48 Akbulut, M. and Sonmez, F.O. (2008), "Optimum design of composite laminates for minimum thickness", Comput. Struct., 86(21-22), 1974-1982. https://doi.org/10.1016/j.compstruc.2008.05.003.   DOI
49 Apalak, M.K., Yildirim, M. and Ekici, R. (2008), "Layer optimisation for maximum fundamental frequency of laminated composite plates for different edge conditions", Compos. Sci. Technol.; 68(2), 537-550. https://doi.org/10.1016/j.compscitech.2007.06.031.   DOI
50 Badallo, P., Trias, D., Marin, L. and Mayugo, J.A. (2013), "A comparative study of genetic algorithms for the multi-objective optimization of composite stringers under compression loads", Composites Part B, 47, 130-136. https://doi.org/10.1016/j.compositesb.2012.10.037.   DOI
51 Callahan, K.J. and Weeks, G.E. (1992), "Optimum design of composite laminates using genetic algorithms", Compos. Eng., 2(3), 149-160. https://doi.org/10.1016/0961-9526(92)90001-M.   DOI
52 Chronopoulos, D. (2015), "Design optimization of composite structures operating in acoustic environments", J Sound Vib, 355, 322-344. https://doi.org/10.1016/j.jsv.2015.06.028.   DOI
53 Cui, X.Y., Liu, G.R. and Li, G.Y. (2011), "Bending and vibration responses of laminated composite plates using an edge-based smoothing technique", Eng. Anal. Boundary Elem., 35(6), 818-826. https://doi.org/10.1016/j.enganabound.2011.01.007.   DOI
54 Dai, K.Y., Liu, G.R., Lim, K.M. and Chen, X.L. (2004), "A mesh-free method for static and free vibration analysis of shear deformable laminated composite plates", J. Sound Vib., 269(3-5), 633-652. https://doi.org/10.1016/S0022-460X(03)00089-0.   DOI
55 Erdal, O. and Sonmez, F.O. (200), "Optimum design of composite laminates for maximum buckling load capacity using simulated annealing", Compos. Struct., 71, 45-52. https://doi.org/10.1016/j.compstruct.2004.09.008.   DOI
56 Dawe, D.J. and Wang, S. (1995), "Spline finite strip analysis of the buckling and vibration of rectangular composite laminated plates", Int. J. Mech. Sci., 37(6), 645-667. https://doi.org/10.1016/0020-7403(94)00086-Y.   DOI
57 Diaconu, C.G., Sato, M. and Sekine, H. (2002), "Buckling characteristics and layup optimization of long laminated composite cylindrical shells subjected to combined loads using lamination parameters", Compos. Struct., 58(4), 423-433. https://doi.org/10.1016/S0263-8223(02)00130-7.   DOI
58 Doane, D.P. and Seward, L.E. (2011), "Measuring skewness: A forgotten statistic?", J. Stat. Educ., 19(2), 1-18. https://doi.org/10.1080/10691898.2011.11889611.
59 Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part I", Mech. Compos. Mater., 48(6), 705-716. https://doi.org/10.1007/s11029-013-9314-x.   DOI
60 Ertas, A.H. (2013), "Optimization of fiber-reinforced laminates for a maximum fatigue life by using the particle swarm optimization. Part II", Mech. Compos. Mater., 49(1), 107-116. https://doi.org/10.1007/s11029-013-9326-6.   DOI
61 Ertas, A.H. and Sonmez, F.O. (2014), "Design optimization of fiber-reinforced laminates for maximum fatigue life", J. Compos. Mater., 48(20), 2493-2503. https://doi.org/10.1177/0021998313499951.   DOI