• 제목/요약/키워드: critical initial energy

검색결과 104건 처리시간 0.033초

Static and dynamic stability of a single-degree-of-freedom autonomous system with distinct critical points

  • Sophianopoulos, D.S.
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.529-540
    • /
    • 1996
  • The dynamic buckling mechanism of a single-degree-of-freedom dissipative/nondissipative gradient system is thoroughly studied, employing energy criteria. The model is chosen in such a manner, that its corresponding static response is associated with all types of distinct critical points. Under a suddenly applied load of infinite duration, it is found that dynamic buckling, occurring always through a saddle, leads to an escaped motion, which is finally attracted by remote stable equilibrium positions, belonging sometimes also to complementary paths. Moreover, although the existence of initial imperfection changes the static behaviour of the system from limit point instability to bifurcation, it is established that the proposed model is dynamically stable in the large, regardless of the values of all other parameters involved.

Comparative Study on Collision Strength of LNG Carriers

  • Choe, Ick-Hung;Kim, Jae-Hyun;Ahn, Ho-Jong;Kim, Oi-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제5권3호
    • /
    • pp.36-44
    • /
    • 2001
  • The collision energy absorbing characteristics of side structure of the LNG carriers which have the cargo containment systems of the spherical and the membrane types are compared. A failure mechanism of the double hull side structures of 130, 000 $m^3$ class LNG carriers under sideways collision event has been simulated by using the detailed finite element calculations. In ship collision analysis, the finite element method based on explicit time integration has been use[1 with much success. Finite element modeling techniques for detail description of structural members antral ship motion regarding the dynamic behavior allowed to investigate the effect of bow shape and the initial contact position on side shell of collided ship. In the numerical simulations of the ship-to-ship sideways collision, the effect of the colliding bow shapes and the change of the colliding ship draft are investigated. The critical collision energy which is absorbed by a side structure of a collided ship until the fore-end of colliding ship arrives at the boundary of the cargo tank is calculated. The critical speed of specified colliding ships which can not penetrate the boundary of the LNG cargo tank of the collided ship under collision accident if evaluated.

  • PDF

A surrogate model for the helium production rate in fast reactor MOX fuels

  • D. Pizzocri;M.G. Katsampiris;L. Luzzi;A. Magni;G. Zullo
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3071-3079
    • /
    • 2023
  • Helium production in the nuclear fuel matrix during irradiation plays a critical role in the design and performance of Gen-IV reactor fuel, as it represents a life-limiting factor for the operation of fuel pins. In this work, a surrogate model for the helium production rate in fast reactor MOX fuels is developed, targeting its inclusion in engineering tools such as fuel performance codes. This surrogate model is based on synthetic datasets obtained via the SCIANTIX burnup module. Such datasets are generated using Latin hypercube sampling to cover the range of input parameters (e.g., fuel initial composition, fission rate density, and irradiation time) and exploiting the low computation requirement of the burnup module itself. The surrogate model is verified against the SCIANTIX burnup module results for helium production with satisfactory performance.

Improvement and application of DeCART/MUSAD for uncertainty analysis of HTGR neutronic parameters

  • Han, Tae Young;Lee, Hyun Chul;Cho, Jin Young;Jo, Chang Keun
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.461-468
    • /
    • 2020
  • The improvements of the DeCART/MUSAD code system for uncertainty analysis of HTGR neutronic parameters are presented in this paper. The function for quantifying an uncertainty of critical-spectrumweighted few group cross section was implemented using the generalized adjoint B1 equation solver. Though the changes between the infinite and critical spectra cause a considerable difference in the contribution by the graphite scattering cross section, it does not significantly affect the total uncertainty. To reduce the number of iterations of the generalized adjoint transport equation solver, the generalized adjoint B1 solution was used as the initial value for it and the number of iterations decreased to 50%. To reflect the implicit uncertainty, the correction factor was derived with the resonance integral. Moreover, an additional correction factor for the double heterogeneity was derived with the effective cross section of the DH region and it reduces the difference from the complete uncertainty. The code system was examined with the MHTGR-350 Ex.II-2 3D core benchmark. The keff uncertainty for Ex.II-2a with only the fresh fuel block was similar to that of the block and the uncertainty for Ex.II-2b with the fresh fuel and the burnt fuel blocks was smaller than that of the fresh fuel block.

NUMERICAL INVESTIGATION OF THE SPREADING AND HEAT TRANSFER CHARACTERISTICS OF EX-VESSEL CORE MELT

  • Ye, In-Soo;Kim, Jeongeun Alice;Ryu, Changkook;Ha, Kwang Soon;Kim, Hwan Yeol;Song, Jinho
    • Nuclear Engineering and Technology
    • /
    • 제45권1호
    • /
    • pp.21-28
    • /
    • 2013
  • The flow and heat transfer characteristics of the ex-vessel core melt (corium) were investigated using a commercial CFD code along with the experimental data on the spreading of corium available in the literature (VULCANO VE-U7 test). In the numerical simulation of the unsteady two-phase flow, the volume-of-fluid model was applied for the spreading and interfacial surface formation of corium with the surrounding air. The effects of the key parameters were evaluated for the corium spreading, including the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The results showed a reasonable trend of corium progression influenced by the changes in the radiation, decay heat, temperature-dependent viscosity and initial temperature of corium. The modeling of the viscosity appropriate for corium and the radiative heat transfer was critical, since the front progression and temperature profiles were strongly dependent on the models. Further development is required for the code to consider the formation of crust on the surfaces of corium and the interaction with the substrate.

수소/공기/희석제 혼합기의 점화지연과 화학반응 특성연구 (Characteristics of Chemical Reaction and Ignition Delay in Hydrogen/Air/Diluent Mixtures)

  • 이동열;이의주
    • 한국안전학회지
    • /
    • 제36권3호
    • /
    • pp.1-6
    • /
    • 2021
  • Hydrogen is considered a cleaner energy source than fossil fuels. As a result, the use of hydrogen in daily life and economic industries is expected to increase. However, the use of hydrogen energy is currently limited because of safety issues. The rate of combustion of the hydrogen mixture is about seven times higher than that of hydrocarbon fuels. The hydrogen mixture is highly flammable and has a low minimum ignition energy. Therefore, it presents considerable risks for fire and explosions in all areas of hydrogen manufacturing, transportation, storage, and use. In this study, the auto-ignition characteristics of hydrogen were investigated numerically for diluted hydrogen mixtures. Auto-ignition temperature, a critical property predicting the fire and explosion risk in hydrogen combustion, was determined in well-stirred reactors. When N2 and CO2 were used to dilute the hydrogen/air mixture, the ignition delay time increased with increasing dilution ratios in both cases. The CO2-diluted mixtures exhibited a longer ignition delay than the N2-diluted mixtures. We also confirmed that lower initial ignition temperatures increased the ignition delay times at 950 K and above. Overall, the auto-ignition characteristics, such as the concentrations of participating species and ignition delay times, were primarily affected by the initial temperature of the mixture.

산화(酸化)/환원(還元) 조건(條件)에 따른 황화광물(黃化鑛物)의 부유선별(浮游選別)에 의한 회수성(回收性) 변화(變化) (The Effect of Oxidation/Reduction of Sulfide Mineral on Its Recovery by Flotation)

  • 김동수
    • 자원리싸이클링
    • /
    • 제16권2호
    • /
    • pp.12-16
    • /
    • 2007
  • Chalcopyrite 를 대상으로 광미 중에 함유된 Sulfide 물질의 부유선별에 의한 분리회수 과정에서 산화가 부유성에 미치는 영향을 고찰하였다. Zisman Plot에 의해 도출된 Chalcopyrite 의 임계계면장력은 약 15.5 dyne/cm인 것으로 파악되었으며 포수제의 농도가 증가함에 따라 그 값은 감소하여 Chalcopyrite의 부유성이 상승하는 것으로 관찰되었다. 초기 산화에 의한 Chalcopyrite의 부유성 상승은 $S_2^{2-}$$S^o$로의 전환에 기인하는 것으로 판단되었으며 형성된 $S^o$$S_4^{2-}$$S_2O_3^{2-}$로 재전환됨에 따라 Chalcopyrite의 부유성은 다시 감소하는 것으로 사료되었다. 산화된 Chalcopyrite의 환원 시 부유성은 상승하는 것으로 나타났으며 산화/환원 과정에서의 임계계면장력의 변화 양상은 원자간 Bond Energy의 변화에 의거한 Energy Diagram으로 해석되었다.

TWO NEW BLOW-UP CONDITIONS FOR A PSEUDO-PARABOLIC EQUATION WITH LOGARITHMIC NONLINEARITY

  • Ding, Hang;Zhou, Jun
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1285-1296
    • /
    • 2019
  • This paper deals with the blow-up phenomenon of solutions to a pseudo-parabolic equation with logarithmic nonlinearity, which was studied extensively in recent years. The previous result depends on the mountain-pass level d (see (1.6) for its definition). In this paper, we obtain two blow-up conditions which do not depend on d. Moreover, the upper bound of the blow-up time is obtained.

An energy-efficient technique for mobile-wireless-sensor-network-based IoT

  • Singla, Jatin;Mahajan, Rita;Bagai, Deepak
    • ETRI Journal
    • /
    • 제44권3호
    • /
    • pp.389-399
    • /
    • 2022
  • Wireless sensor networks (WSNs) are one of the basic building blocks of Internet of Things (IoT) systems. However, the wireless sensing nodes in WSNs suffer from energy constraint issues because the replacement/recharging of the batteries of the nodes tends to be difficult. Furthermore, a number of realistic IoT scenarios, such as habitat and battlefield monitoring, contain mobile sensing elements, which makes the energy issues more critical. This research paper focuses on realistic WSN scenarios that involve mobile sensing elements with the aim of mitigating the attendant energy constraint issues using the concept of radio-frequency (RF) energy extraction. The proposed technique incorporates a cluster head election workflow for WSNs that includes mobile sensing elements capable of RF energy harvesting. The extensive simulation analysis demonstrated the higher efficacy of the proposed technique compared with the existing techniques in terms of residual energy, number of functional nodes, and network lifetime, with approximately 50% of the nodes found to be functional at the 4000th, 5000th, and 6000th rounds for the proposed technique with initial energies of 0.25, 0.5 and 1 J, respectively.

삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰 (Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results)

  • 천성호;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF