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a b s t r a c t

The improvements of the DeCART/MUSAD code system for uncertainty analysis of HTGR neutronic pa-
rameters are presented in this paper. The function for quantifying an uncertainty of critical-spectrum-
weighted few group cross section was implemented using the generalized adjoint B1 equation solver.
Though the changes between the infinite and critical spectra cause a considerable difference in the
contribution by the graphite scattering cross section, it does not significantly affect the total uncertainty.
To reduce the number of iterations of the generalized adjoint transport equation solver, the generalized
adjoint B1 solution was used as the initial value for it and the number of iterations decreased to 50%. To
reflect the implicit uncertainty, the correction factor was derived with the resonance integral. Moreover,
an additional correction factor for the double heterogeneity was derived with the effective cross section
of the DH region and it reduces the difference from the complete uncertainty. The code system was
examined with the MHTGR-350 Ex.II-2 3D core benchmark. The keff uncertainty for Ex.II-2a with only the
fresh fuel block was similar to that of the block and the uncertainty for Ex.II-2b with the fresh fuel and
the burnt fuel blocks was smaller than that of the fresh fuel block.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

For an uncertainty analysis of a high temperature gas-cooled
reactor (HTGR), the MUSAD (Modules of Uncertainty and Sensi-
tivity Analysis for DeCART) [1,2] code has been developed based on
the generalized perturbation theory (GPT) [3,4]. The code is used in
the lattice physics analysis step of the two-step uncertainty analysis
procedure [5,6]. It can provide sensitivities and uncertainties for
general responses with the generalized adjoint fluxes calculated by
the DeCART code [7] and also generates randomly sampled few-
group cross section sets for the CAPP code [8], which is a core
simulation code for block type HTGR cores.

The DeCART code can directly solve the generalized adjoint
equation for the double heterogeneity (DH) region which is
composed of the graphite matrix and TRISO fuel particles randomly
dispersed in the matrix. For this, two generalized adjoint equation
solvers were implemented into the DeCARTcode [2]. The first one is
the generalized adjoint transport equation solver extended for the
DH problems based on the Sanchez-Pomraning method [9] which
e).

by Elsevier Korea LLC. This is an
was implemented in the forward transport equation solver of the
DeCART [10]. The second one is the generalized adjoint B1 equation
solver which provides the generalized adjoint flux in one homog-
enized problem regionwithout a spatial dependency or explicit DH
treatment.

The aim of this paper is to present recent improvements of the
DeCART/MUSAD code system for the uncertainty analysis of HTGR
neutronic parameters. First, the function for quantifying an uncer-
tainty of a critical-spectrum-weighted few group cross section was
implemented using the generalized adjoint B1 equation solver. In
the lattice physics analysis step of the two-step uncertainty analysis
procedure, a cross section uncertainty provided by DeCART/MUSAD
was usually calculated with an infinite spectrum of a fuel block or
assembly. Actually, few-group cross sections for a nuclear design
should be generated with a critical spectrum weighting. Therefore,
it is necessary to evaluate the difference between the few-group
cross section uncertainties with the infinite spectrum and critical
spectrum. The second is the improvement of the convergence for
the generalized adjoint transport equation solver. The coarse mesh
finite difference (CMFD) acceleration cannot be used for the
method of characteristics (MOC) iteration in the generalized adjoint
transport equation solver. Thus, it has a slow convergence by MOC-
only iterations. To improve this, the generalized adjoint B1 solution
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can be used as the initial value for the generalized adjoint transport
solution. The third improvement is to apply the correction factor for
the implicit uncertainty reflecting the resonance self-shielding ef-
fect and the DH effect. The correction factor is derived with the
resonance integral and the effective cross section used in DeCART.

The methodologies and the verification results for the three
improvements are described in Sections 2 and 3. In addition, the
DeCART/MUSAD code system was applied to an uncertainty anal-
ysis of the MHTGR-350 Ex.II-2 3D core benchmark proposed by the
IAEA CRP for the HTGR uncertainty analysis in modeling (UAM)
[11], and the analysis results are provided in Section 4.
2. Application of the generalized adjoint B1 equation

DeCART has two generalized adjoint equation solvers: the
generalized adjoint transport equation solver and the generalized
adjoint B1 equation solver. The first one solves the generalized
adjoint neutron transport equation using the method of charac-
teristics (MOC), as in the forward transport equation solver. In
addition, it can directly solve the generalized adjoint equation for
the DH region of HTGR fuel using the Sanchez and Pomraning
method. The other one solves the generalized adjoint B1 equation
for a homogenized region. The generalized adjoint B1 equation
solver has the merit of a high computation speed because it gives
the generalized adjoint flux in one homogenized region without a
spatial flux distribution.

In this study, the algorithm of the generalized adjoint B1 equa-
tion solver was applied to obtain the uncertainty of the few group
cross section under critical conditions. In addition, the generalized
adjoint B1 solution was used to improve the convergence of the
generalized adjoint transport equation solver. First, a simple review
of the generalized adjoint B1 equation solver implemented in the
DeCART for a cross section uncertainty analysis is described below.
2.1. Review of the generalized adjoint B1 equation

After solving the forward neutron transport equation, DeCART
solves the following multi-group B1 equation to obtain the critical
spectrum, which is used to generate the homogenized few-group
constants for each homogenization region:

AJ ¼ FJ; (1)
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and ag is defined in the reference [2]). In Eq. (1), the cross-sections
Stg , nSfg , S
ðiÞ
sgg0 are the homogenized total cross-section of group g,

the homogenized fission cross-section of group g multiplied by the
number of neutrons per fission, and the ith moment of the ho-
mogenized scattering cross-section from group g0 to group g,
respectively. cg is the fission spectrum of group g, and J is the
fundamental mode scalar flux.

Therefore, the eigen-mode and generalized adjoint B1 equations
for the homogenized system can be expressed as follows:

A*J* ¼ F*J*; (2a)

A*G* ¼ F*G* þ S*G; (2b)

where

A*¼AT ¼ St þ DTB2 � ST
s ;
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:

S*G is the generalized adjoint source vector for a general response
R ¼ H1,J

H2,J
, where H1 and H2 are the response function vector

defined by the input parameters such as multi-group cross-
sections.

The generalized adjoint B1 equation, Eq. (2b), can be solved in
the same way with the generalized adjoint transport equation
which is described in the reference [1]. It is noted that the solution
algorithm additionally needs the decontamination procedure as
follows:

hG*FJi ¼ 0: (3)

The generalized adjoint B1 equation combined with the auxil-
iary condition can be solved iteratively as follows:

G*
nþ1 ¼G*

n � CnJ
*; (4)

where, the correction factor for the iteration is defined as Cn ¼
hJF*G*

ni
hJF*J*i.
Once the generalized adjoint B1 solution, G*, is obtained, the
sensitivity coefficients can be conventionally calculated using the
generalized perturbation theory.

2.2. Cross section uncertainty using the critical spectrum

DeCART utilizes the B1 equation for a critical spectrum search.
The infinite spectrum can be obtained by solving the B1 equation,
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Eq. (1), with B2 ¼ 0 and the critical spectrum can be obtained by
solving the B1 equation with a critical buckling search in which the
buckling, B2, is adjusted to make the homogenized system critical.
Thus, the generalized adjoint B1 equation described in the previous
section can be directly used to obtain the uncertainty critical-
spectrum-weighted cross section.

To obtain the generalized adjoint flux under a critical condition,
the eigen-mode forward flux and adjoint flux should be calculated
in advance using the critical buckling search algorithm of the B1
equation solver. After obtaining the forward neutron transport
solution by the MOC solver, the cross-sections are homogenized by
averaging the flat-source-region-wise cross-sections with a for-
ward flux weighting and the B1 equation, the adjoint B1 equation,
and the generalized adjoint B1 equation are set up. The eigen-mode
forward critical spectrum, adjoint critical spectrum, and B2 for the
critical system can be, then, calculated with the critical buckling
search algorithm. Finally, the generalized adjoint B1 equation, Eq.
(2b), with the given critical buckling and the eigen-mode solutions
can be solved as described in section 2.1. Using the generalized
adjoint flux, MUSAD can calculate the sensitivities and un-
certainties of the few-group cross sections for a critical system.
Fig. 1 shows the algorithm for few-group cross section uncertainty
analysis under critical conditions as described above.

To evaluate the uncertainty of a critical system using the
generalized adjoint B1 equation solver, the HTGR fuel pin problem,
the MHTGR-350 Ex. I-1b HFP case [12], was chosen. It has a DH fuel
compact which contains explicit TRISO particles with uranium
oxycarbide (UC0.5O1.5) kernel randomly dispersed in a graphite
matrix shown in Fig. 2. All numerical tests were performed using a
190-group cross section library and the covariance data from ENDF/
B-VII.1. It is noted that the covariance data of 235U n value in ENDF/
B-VII.1 are very different from those in the SCALE 44-group library.
Fig. 1. Procedure for the few-group cross section un
Fig. 3 shows a comparison of the two generalized adjoint fluxes
under the infinite and critical spectrum. It was observed that there
are slight differences between the two solutions over the entire
energy region. Table 1 shows the comparison of the keff un-
certainties by the transport solution under the infinite spectrum
and two B1 solutions under the infinite spectrum and the critical
spectrum. The comparison between the transport and the B1 results
reveals that the B1 equation solver can produce a similar solution. It
also shows that the keff uncertainty with the critical spectrum is
similar to that with the infinite spectrum except for the contribu-
tion by the graphite scattering-scattering. Although the contribu-
tion by the graphite scattering cross section largely increases in the
case with the critical spectrum, the difference in the total keff un-
certainty between the two cases is not considerable because of the
dominant contribution by the 235U n and 238U capture cross section.
Table 2 shows a comparison of the 238U capture cross section un-
certainty under two different spectrums. It can also be observed
that the contribution of the graphite scattering slightly increases. It
may be attributed to the difference of the generalized adjoint flux in
the thermal range shown in Fig. 3. The total cross section un-
certainties are, however, very close to each other.

It is clear that the changes between the infinite and critical
spectra cause the slight difference in the contribution by the
graphite scattering cross section, and it does not significantly affect
the total uncertainty.

2.3. Improvement of the convergence for the generalized adjoint
transport equation solver

DeCART uses the coarse mesh finite difference (CMFD) acceler-
ation to reduce the number of the MOC iterations in the forward
transport equation solution scheme. However because the
certainty analysis under the critical condition.



Fig. 2. Configuration of the MHTGR-350 Ex.I-1b.

Fig. 3. Comparison of the generalized adjoint flux in the infinite and critical system.

Table 1
keff uncertainty based on the infinite and critical spectra.

Contributor Dk/k (%)

Transport (Infinite) B1 (Infinite) B1 (Critical)

235U n-n 0.612 0.612 0.607
235U cap-cap 0.238 0.238 0.229
235U fis-cap 0.074 0.073 0.076
235U fis-fis 0.071 0.071 0.082
238U cap-cap 0.570 0.592 0.580
C sct-sct 0.159 0.166 0.238
Total 0.890 0.905 0.910

Table 2
238U capture cross section uncertainty by the infinite and critical spectrum.

Contributor DR/R (%)

Transport (Infinite) B1 (Infinite) B1 (Critical)

235U cap-cap 0.061 0.061 0.063
235U fis-cap 0.015 0.015 0.014
235U fis-fis 0.026 0.026 0.024
238U cap-cap 1.319 1.346 1.343
C sct-sct 0.144 0.142 0.166
Total 1.328 1.355 1.355

T.Y. Han et al. / Nuclear Engineering and Technology 52 (2020) 461e468464



Table 3
Number of MOC iterations for the generalized adjoint transport solution.

Ex.I-2a Fresh Fuel Block Ex.I-2b Burnt Fuel Block

Initial Value No. MOC
Iterations (#)

238U Capture XS
Uncertainty (%)

No. MOC
Iterations (#)

235U Fission XS
Uncertainty (%)

0.0 (Ref.) 17 1.351 19 0.625
B1 Solution 9 1.351 9 0.625
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generalized adjoint equation allows negative solutions, the CMFD
acceleration cannot be used for the MOC in the generalized adjoint
transport equation solver. Thus, its solution should be obtained by
MOC-only iterations.

To reduce the number of MOC iterations of the generalized
adjoint equation solver, the generalized adjoint B1 solution can be
used as the initial value for the generalized adjoint transport so-
lution. Before solving the generalized adjoint transport equation,
the generalized adjoint B1 solution which does not have a spatial
dependency, can be quickly obtained within a few seconds.

To verify the proposed method, two different problems, Ex.I-2a
fresh fuel block and Ex.I-2b burnt fuel block [12], were examined.
The first one is composed of 210 fresh fuel pins defined in Ex.I-1b
and 6 lumped burnable poisons in the six corners of the block
shown in Fig. 4 and the convergence of the generalized adjoint
solution for the 238U capture cross section was investigated. The
second one is composed of only burnt fuel pins with the same
configuration of Ex.I-2a and that for the 235U fission cross section
was evaluated.

Table 3 shows the number of MOC iterations and the cross
section uncertainties calculated with two different initial values,
zero and the generalized adjoint B1 solution, respectively. It reveals
that the number of MOC iterations in the case of the generalized
adjoint B1 solution as the initial value decreases to 50% in both
problems.

3. Implicit uncertainty reflecting double heterogeneity

DeCART/MUSAD uses the self-shielded multi-group cross sec-
tion prepared by an external code system. However, the uncertainty
analysis with the shielded cross section causes an inconsistency
with the covariance data of the evaluated nuclear data files based
on the infinitely-diluted cross sections. Thus, the uncertainty
change caused by the resonance treatment should be considered as
the implicit uncertainty.

In DeCART/MUSAD, the implicit uncertainty can be calculated
using the Chiba method [13] based on the self-shielding factor. The
method has an advantage that the implicit effect can be easily
calculated in the lattice code without any data from a resonance
treatment code. However, it was found that the error of the un-
certainty in the DH problem of a HTGR is slightly larger than that in
the homogeneous case when applying the correction method. Thus
it needs an additional correction to reflect the self-shielding effect
by the DH.

First, the modified correction method without the self-shielding
factor is described in detail, because DeCART does not use the self-
shielding factor. Then, the additional correction factor for the
Fig. 4. Fuel block configuration of Ex.I-2a and Ex.I-2b.
implicit uncertainty reflecting the DH is proposed in the next
section.
3.1. The modified correction method for the implicit uncertainty

If the sensitivity of a general response, R, by an infinitely diluted
cross section, s, is expressed with the self-shielded cross section, ~s,
and the background cross section, sb, it can be rewritten as follows:

S¼dR
ds

s

R
¼

�
dR
d~s

~s

R

��
d~s
ds

s
~s

�
¼ ~S

�
d~s
ds

s
~s

�
¼ ~S

�
d~s
dsb

sb
~s

��
dsb
ds

s

sb

�
;

(5)

where, ~S is the explicit sensitivity for the general response by the
self-shielded multi-group cross section. Contrary to the Chiba's
derivation, the resonance integral instead of the self-shielding
factor can be used to obtain the relation between s and ~s as follows:

~s ¼ ssbT
sb � saT

; (6)

where, sa is the absorption cross section. In addition, the resonance
integral, T , for the self-shielded cross section can be reproduced
from Segev's interpolation [14] in DeCART as follows:

T ¼
�

sb
sb þ h

�p

; (7)

where, h and p are the coefficients determined from the two
resonance integral table entries. If applying the differentiation in
terms of sb, Eq. (7) can be transformed as

dT
dsb

¼ phT
sbðsb þ hÞ (8)

Then, d~s
dsb

in Eq. (5) can be readily replaced with T from Eq. (6),
Eq. (7), and Eq. (8) and the sensitivity can be approximated as
follows:

~S
�
d~s
ds

s
~s

�
y ~S

~s

Ts

�
1� ph

sb þ h
þ Ts

sb

�
¼ ~Su1; (9)

where, the approximation, dsb
ds y� sb

sa
, derived by Chibawas used for

the simplification and u1 is the correction factor for the implicit
sensitivity induced by the resonance self-shielding effect.
3.2. Implicit uncertainty correction reflecting double heterogeneity

However, it was found that the DH fuel of a HTGR has another
spatial self-shielding effect. It means that the uncertainty is
changed by the DH effect and it needs an additional correction.

We can define the relation between the effective cross section
for the DH region, bs, and the multi-group cross section, ~s, as
follows:
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bs ¼ g~s; (10)

where, g is the self-shielding factor for the DH.
Because DeCART adopts the renewal theory by Sanchez and

Pomraning, the self-shielding factor for the DH can be approxi-
mated as follows:

gz
bS

Smix
; (11)

where, bS is the macroscopic effective cross section for the DH re-
gion approximated by the renewal theory. The detailed explanation
for the effective cross section can be found in the reference [9]. In
addition, Smix is the volume weighted cross section for the mixture
with the TRISO fuel as follows:

Smix ¼ p0S0 þ
X
ik

pikSik; (12)

where, p0 and S0 are the volume fraction and the total cross section
for the base material of the fuel compact and pik and Sik are the
volume fraction and the total cross section for the k-th layer of the i
type TRISO.

One can derive the sensitivity considering the self-shielding
effect of the DH as follows:

S¼
�
dR
dbs bs

R

��
dbs
d~s

~sbs
��

d~s
ds

s
~s

�
¼ bS�dbs

d~s
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��
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s
~s

�
zbS�dg

d~s
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g
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�
u1

¼ bSu2u1;

(13)

where, bS is the sensitivity by the effective cross section and dbs
d~s

can

be rewrittenwith the perturbation equation to Eq. (10). In addition,
u1 is defined in Eq. (9) and u2 is the correction factor for the im-
plicit sensitivity of the DH. The correction factor can be calculated
by the direct perturbation as follows:

dg
d~s

~s

g
þ1z

Dg

D~s

~s

g
þ 1 (14)

The verification calculation of the proposed correction method
was performedwith theMHTGR 350 Ex.I-1b CZP and HZP problems
shown in Fig. 2. The reference results were obtained fromMcCARD
[15] based on the Monte Carlo method.

Table 4 shows the comparisons between the reference and the
explicit and implicit uncertainty by MUSAD for the problems. The
explicit uncertainty caused by the 238U absorption-absorption in
Table 4
kinf uncertainty for Ex.I-1b.

Problem Ex.I-1b CZP

Code McCARD DeCART/MUSAD

Contributor Type

Explicitþ
Implicit (%)

Explicit (%) Explicitþ
Implicit1 (%)

Explicit þ Implicit2 (%)

235U n-n 0.617 0.617 0.617 0.617
235U abs-abs 0.239 0.240 0.239 0.239
235U fis-fis 0.065 0.065 0.065 0.065
238U abs-abs 0.316 0.437 0.328 0.312
Total 0.753 0.815 0.762 0.755

Implicit1: Implicit uncertainty by resonance self-shielding effect.
Implicit2: Implicit uncertainty by resonance self-shielding effect and double heterogene
the MUSAD result was overestimated to about 40% compared with
the McCARD result. On the other hand, in the case when consid-
ering the implicit uncertainty by the resonance self-shielding ef-
fect, the differences from the reference decrease to about 4% in the
CZP case and 11% in the HFP case, respectively. Moreover, when
applying the implicit effect correction by the DH, the difference in
the HFP case decreases to 2.3%. Considering the simple correction
without any data from the external resonance treatment code as
shown in Eq. (13), it is clear that the proposed method is consid-
erably effective.
4. HTGR UAM benchmark results

In our previous study [6], we established a two-step procedure
for an uncertainty analysis of the HTGR core parameters. The
DeCART/MUSAD code system was used in the lattice step to
calculate few-group cross section uncertainty and to generate the
random sampled few-group cross section sets. A core simulation
code for HTGR, CAPP, was then applied to generate the core pa-
rameters with the sampled few-group cross section sets and the
uncertainty for them can be simply obtained by statistical
processing.

The DeCART/MUSAD code was improved by the methods
described in previous sections. The generalized adjoint solutions
were obtained using the generalized adjoint transport equation
with the initial value from the generalized adjoint B1 equation and
the implicit uncertainties were corrected by the correction factor to
reflect the resonance self-shielding effect and DH effect. The per-
formance of the code system was examined with the MHTGR-350
Ex.II-2 3D core benchmark. It consists of two problems, Ex.II-2a
and Ex.II-2b. The first one consists of the fresh fuel and the
reflector blocks and the second consists of the fresh fuel, the burnt
fuel, and the reflector blocks. It is noted that the two core problems
involve the steady-state neutronics calculation at the HFP condition
without any temperature feedback. The calculation results are
provided in the next two sections.
4.1. MHTGR-350 Ex. II-2a benchmark

MHTGR-350 Ex. II-2a consists of the fresh fuel blocks of Ex.I-2a
shown in Fig. 4 and the graphite reflector blocks. Fig. 5a shows the
radial configuration of the core. The 3D core has axially 4 bottom
reflector layers, 10 identical fuel layers, and 2 top reflector layers.

First, DeCART/MUSAD generated the few-group cross section
and their uncertainties for the fresh fuel block using the super cell
as shown in Fig. 5b, and the reflector cross section using the super
cell shown in Fig. 5c. In addition, MUSAD generated the random
Ex.I-1b HFP

McCARD DeCART/MUSAD

Explicitþ
Implicit (%)

Explicit (%) Explicit þ Implicit1 (%) Explicit þ Implicit2 (%)

0.611 0.612 0.612 0.612
0.237 0.238 0.238 0.237
0.071 0.071 0.071 0.071
0.388 0.555 0.432 0.397
0.784 0.883 0.811 0.793

ity.



Fig. 5. Ex.II-2a core layout and the super cell configuration.

Table 5
Core parameter uncertainties for Ex.II-2a.

Problem 3D Core Super Cell for Fresh Fuel Block

Code DeCART/MUSAD/CAPP DeCART/MUSAD

Parameter keff Axial Offset (%) kinf

Value 1.05994 �0.012 1.08757
Uncertainty (%) 0.731 4.516 0.747
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sampled few-group cross section sets based on their uncertainties.
The number of few-group cross section sets is 600 in this study. In
the second step, CAPP performed the 3D core analysis with the
sampled few-group cross section sets.

Table 5 shows the keff uncertainty for the 3D core problem. For
the comparison, it also shows the kinf uncertainty of the super cell
problem for the fresh fuel block cross section shown in Fig. 5b.
Because the Ex.II-2a core consists of only the fresh fuel block, the
keff uncertainty for the core is similar to that of the super cell
problem. In addition, the table shows the uncertainty for the axial
offset of the 3D core. It is relatively a large value due to the very
small axial offset. Fig. 6 shows the relative radial power distribution
and their uncertainties. The uncertainties for the relative radial
Fig. 6. Radial power distribution and their uncertainty for Ex.II-2a.
power are very small, because the core consists of only one fuel
block type. Of note, there have been no reference results for Ex.II-2
reported by the HTGR UAM yet.

4.2. MHTGR-350 Ex. II-2b benchmark

MHTGR-350 Ex. II-2b consists of the fresh fuel blocks, the burnt
fuel blocks, and the graphite reflector blocks shown in Fig. 7. It has a
reflector block with a control rod partially inserted in position C
shown in Fig. 7a. The figure also shows the super cell models for
generating the few-group cross sections of the fresh fuel block, the
burnt fuel block, and the graphite block, respectively.

Table 6 presents the uncertainties for the keff and the axial offset
of the core. The keff uncertainty is smaller than that of the fresh fuel
block due to the burnt fuel block. The axial offset is more negative
and its uncertainty is smaller due to the control rod. In addition,
Fig. 8 shows the relative radial power distribution and their un-
certainties for the core. They are larger than those of Ex.II-2a due to
the configuration with two fuel types.
Fig. 7. Ex.II-2b core layout and the super cell configurations.



Table 6
Core parameter uncertainties for Ex.II-2b.

Problem 3D Core Super Cell for Fresh Fuel Block Super Cell for Burnt Fuel Block

Code DeCART/MUSAD/CAPP DeCART/MUSAD DeCART/MUSAD

Parameter keff Axial Offset (%) kinf kinf

Value 1.04104 �0.108 1.05621 1.04503
Uncertainty (%) 0.695 1.529 0.776 0.581

Fig. 8. Radial power distribution and their uncertainty for Ex.II-2b.
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5. Conclusions

In this paper, the improvements of the DeCART/MUSAD code
system for the uncertainty analysis of the HTGR neutronic param-
eters were presented. The function for quantifying an uncertainty
of the critical-spectrum-weighted few group cross section was
implemented using the generalized adjoint B1 equation solver.
First, the eigen-mode forward critical spectrum and adjoint critical
spectrum were calculated with the critical buckling search algo-
rithm. Then, the generalized adjoint B1 equation with the given
critical buckling was solved. Though the changes between the
infinite and critical spectra caused a considerable difference in the
contribution by the graphite scattering cross section, it does not
significantly affect the total keff uncertainty. In addition, to reduce
the number of MOC iterations of the generalized adjoint equation
solver, the generalized adjoint B1 solution was used as the initial
value for the generalized adjoint transport solution. The number of
MOC iterations in that case decreased to 50% compared with the
case of the zero initial values. To reflect the implicit uncertainty by
the self-shielding effect in the DeCART/MUSAD, the modified
correction factor without the self-shielding factor was derived with
the resonance integral. It reduced the differences from the refer-
ence in the uncertainty induced by the 238U absorption cross sec-
tion from 40% to 4% in the CZP case and 11% in the HFP case.
Moreover, the additional correction factor for the implicit uncer-
tainty reflecting the DH was proposed in this paper. It was
expressed in terms of the effective cross section proposed by San-
chez and Pomraning and it reduced the error in the contribution by
the 238U absorption cross section to 2.3%.

The DeCART/MUSAD code was improved by the proposed
methods and its performance was examined with the MHTGR-350
Ex.II-2 3D core benchmark. In the case of Ex.II-2a core composed of
the fresh fuel blocks only, the keff uncertainty for the core was very
similar to that of the super cell problem for the fresh fuel block
cross section. In addition, the keff uncertainty for Ex.II-2b which
consists of fresh fuel blocks and burnt fuel blocks was smaller than
that of the fresh fuel block.
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