DOI QR코드

DOI QR Code

A surrogate model for the helium production rate in fast reactor MOX fuels

  • D. Pizzocri (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • M.G. Katsampiris (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • L. Luzzi (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • A. Magni (Politecnico di Milano, Department of Energy, Nuclear Engineering Division) ;
  • G. Zullo (Politecnico di Milano, Department of Energy, Nuclear Engineering Division)
  • Received : 2023.01.26
  • Accepted : 2023.04.29
  • Published : 2023.08.25

Abstract

Helium production in the nuclear fuel matrix during irradiation plays a critical role in the design and performance of Gen-IV reactor fuel, as it represents a life-limiting factor for the operation of fuel pins. In this work, a surrogate model for the helium production rate in fast reactor MOX fuels is developed, targeting its inclusion in engineering tools such as fuel performance codes. This surrogate model is based on synthetic datasets obtained via the SCIANTIX burnup module. Such datasets are generated using Latin hypercube sampling to cover the range of input parameters (e.g., fuel initial composition, fission rate density, and irradiation time) and exploiting the low computation requirement of the burnup module itself. The surrogate model is verified against the SCIANTIX burnup module results for helium production with satisfactory performance.

Keywords

Acknowledgement

This work has received funding from the Euratom research and training programme 2019-2020 under grant agreement No. 945077 (PATRICIA Project).

References

  1. K. SHIBATA, et al., Japanese evaluated nuclear data library version 3 revision3: JENDL-3.3, J. Nucl. Sci. Technol. 39 (11) (2002) 1125-1136, https://doi.org/10.1080/18811248.2002.9715303.
  2. M.E. Meek, B.F. Rider, Compilation of Fission Product Yields, Vallecitos Nuclear Center, 1974. United States, 1974. [Online]. Available: https://www.osti.gov/biblio/4279375.
  3. M.J. Bell, origen-2 Code," ORNL-Tm4397, Oak Ridge National Laboratories (ORNL), 1973.
  4. D.I. Poston, H.R. Trellue, User's Manual, Version 1.00 for Monteburns, Version 3.01, 1998, https://doi.org/10.2172/307942. United States.
  5. S.M. Bowman, M.D. DeHart, C. V Parks, Validation of SCALE-4 for burnup credit applications, Nucl. Technol. 110 (1) (1995) 53-70. https://doi.org/10.13182/NT95-A35096
  6. S. Xia, et al., Development of a molten salt reactor specific depletion code MODEC, Ann. Nucl. Energy 124 (Feb. 2019) 88-97, https://doi.org/10.1016/j.anucene.2018.09.032.
  7. J. de Troullioud de Lanversin, M. Kutt, A. Glaser, ONIX: an open-source depletion code, Ann. Nucl. Energy 151 (Feb. 2021) 107903, https://doi.org/10.1016/j.anucene.2020.107903.
  8. P.K. Romano, N.E. Horelik, B.R. Herman, A.G. Nelson, B. Forget, K. Smith, OpenMC: a state-of-the-art Monte Carlo code for research and development, Ann. Nucl. Energy 82 (2015) 90-97, https://doi.org/10.1016/j.anucene.2014.07.048.
  9. I.R. Birss, Helium production in reactor materials, J. Nucl. Mater. 34 (3) (1970) 241-259. https://doi.org/10.1016/0022-3115(70)90192-3
  10. L.R. Greenwood, A new calculation of thermal neutron damage and helium production in nickel, J. Nucl. Mater. 115 (2-3) (1983) 137-142. https://doi.org/10.1016/0022-3115(83)90302-1
  11. K. Lassmann, TRANSURANUS: a fuel rod analysis code ready for use, J. Nucl. Mater. 188 (1992) 295-302, https://doi.org/10.1016/0022-3115(92)90487-6.
  12. K. Geelhood, W. Luscher, P. Raynaud, I. Porter, FRAPCON-4.0: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup, 2015.
  13. C. Lee, D. Kim, J. Song, J. Bang, Y. Jung, RAPID model to predict radial burnup distribution in LWR UO 2 fuel, Journal of Nuclear Materials - J NUCL MATER 282 (Dec. 2000) 196-204, https://doi.org/10.1016/S0022-3115(00)00408-6.
  14. S.Y. Kurchatov, V. v Likhanskii, A.A. Sorokin, O. v Khoruzhii, RTOP-code simulation of the radial distribution of heat release and plutonium isotope accumulation in high burnup oxide fuel, Atom. Energy 92 (4) (2002) 349-356. https://doi.org/10.1023/A:1016562228619
  15. A. Soba, A. Denis, Simulation with DIONISIO 1.0 of thermal and mechanical pellet-cladding interaction in nuclear fuel rods, J. Nucl. Mater. 374 (Feb. 2008) 32-43, https://doi.org/10.1016/j.jnucmat.2007.06.020.
  16. H. Akie, I. Sato, M. Suzuki, H. Serizawa, Y. Arai, Simple formula to evaluate helium production amount in fast reactor MA-containing MOX fuel and its accuracy, J. Nucl. Sci. Technol. 50 (1) (2013) 107-121. https://doi.org/10.1080/00223131.2013.750066
  17. V.I. Tarasov, E.F. Mitenkova, N. v Novikov, MFPR/R-Aided modeling of hydrogen and helium production in nuclear fuel, Atom. Energy 125 (6) (2019) 370-375, https://doi.org/10.1007/s10512-019-00496-3.
  18. E. Federici, A. Courcelle, P. Blanpain, H. Cognon, Helium Production and Behavior in Nuclear Oxide Fuels during Irradiation in LWR, United States: American Nuclear Society - ANS, La Grange Park (United States), 2007 [Online]. Available: https://www.osti.gov/biblio/21229336.
  19. P. van Uffelen, J. Hales, W. Li, G. Rossiter, R. Williamson, A review of fuel performance modelling, J. Nucl. Mater. 516 (2019) 373-412, https://doi.org/10.1016/j.jnucmat.2018.12.037.
  20. K. Lassmann, The structure of fuel element codes, Nucl. Eng. Des. 57 (1) (1980) 17-39, https://doi.org/10.1016/0029-5493(80)90221-6.
  21. R.L. Williamson, et al., Multidimensional multiphysics simulation of nuclear fuel behavior, J. Nucl. Mater. 423 (1) (2012) 149-163, https://doi.org/10.1016/j.jnucmat.2012.01.012.
  22. J.C. Helton, F.J. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems, Reliab. Eng. Syst. Saf. 81 (1) (2003) 23-69, https://doi.org/10.1016/S0951-8320(03)00058-9.
  23. D. Pizzocri, T. Barani, L. Luzzi, SCIANTIX: a new open source multi-scale code for fission gas behaviour modelling designed for nuclear fuel performance codes, J. Nucl. Mater. 532 (Apr. 2020), https://doi.org/10.1016/j.jnucmat.2020.152042.
  24. A. Cechet, et al., A new burn-up module for application in fuel performance calculations targeting the helium production rate in (U,Pu)O2 for fast reactors, Nucl. Eng. Technol. 53 (6) (Jun. 2021) 1893-1908, https://doi.org/10.1016/j.net.2020.12.001.
  25. J. Leppanen, M. Pusa, T. Viitanen, V. Valtavirta, T. Kaltiaisenaho, The Serpent Monte Carlo code: status, development and applications in 2013, Ann. Nucl. Energy 82 (Aug. 2015) 142-150, https://doi.org/10.1016/j.anucene.2014.08.024.
  26. D. Olander, Nuclear fuels e present and future, J. Nucl. Mater. 389 (1) (2009) 1-22, https://doi.org/10.1016/j.jnucmat.2009.01.297.
  27. J.M. Bonnerot, Thermal Properties of Mixed Uranium and Plutonium Oxides, CEA Centre d'Etudes Nucleaires de Cadarache, 1988.
  28. J.J. Carbajo, G.L. Yoder, S.G. Popov, V.K. Ivanov, A review of the thermophysical properties of MOX and UO2 fuels, J. Nucl. Mater. 299 (3) (2001) 181-198, https://doi.org/10.1016/S0022-3115(01)00692-4.
  29. G. Locatelli, M. Mancini, N. Todeschini, Generation IV nuclear reactors: current status and future prospects, Energy Pol. 61 (2013) 1503-1520, https://doi.org/10.1016/j.enpol.2013.06.101.
  30. K. Tasaka, et al., JNDC Nuclear Data Library of Fission Products, second version, Japan Atomic Energy Research Inst., 1990.
  31. S. Altieri, A Burnup Meta-Model for Application in Fuel Performance Codes: Development and Verification for MOX Fuel in Pressurized Water Reactors, MSc Thesis, Politecnico di Milano, 2019.
  32. A. Cechet, Modelling of Helium Behaviour in Oxide Nuclear Fuels for Fuel Performance Analysis, MSc Thesis, Politecnico di Milano, 2020.
  33. M.D. McKay, R.J. Beckman, W.J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics 21 (2) (May 1979) 239-245, https://doi.org/10.1080/00401706.1979.10489755.
  34. The MathWorks Inc, MATLAB, Natick, Massachusetts, 2019.
  35. SAS Institute Inc, JMP®, Version 16.1, 2021. Cary, NC.
  36. K. Pearson, X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, London, Edinburgh Dublin Phil. Mag. J. Sci. 50 (302) (Jul. 1900) 157-175, https://doi.org/10.1080/14786440009463897.
  37. A.S.S.K.B. Glantz, Primer of Applied Regression and Analysis of Variance, McGraw-Hill, 1990.
  38. J. Leppanen, Serpent-a Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code, vol. 4, VTT Technical Research Centre of Finland, 2013.