• 제목/요약/키워드: critical fluid velocity

검색결과 150건 처리시간 0.03초

유체유동에 의한 복합재료 파이프의 안정성 해석 (Stability Analysis of Composite Material Pipes Conveying Fluid)

  • 최재운;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제11권8호
    • /
    • pp.314-321
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is Investigated. The theory of than walled beams is applied and transverse shear. rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transformed to an eigenvlaue problem which provides the Information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Variation of critical velocity of fluid with fiber angles and mass patios of fluid to pipe Including fluid is investigated.

  • PDF

The effect of Fe2O3 nanoparticles instead cement on the stability of fluid-conveying concrete pipes based on exact solution

  • Nouri, Alireza Zamani
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.31-37
    • /
    • 2018
  • This paper deals with the stability analysis of concrete pipes mixed with nanoparticles conveying fluid. Instead of cement, the $Fe_2O_3$ nanoparticles are used in construction of the concrete pipe. The Navier-Stokes equations are used for obtaining the radial force of the fluid. Mori-Tanaka model is used for calculating the effective material properties of the concrete $pipe-Fe_2O_3$ nanoparticles considering the agglomeration of the nanoparticles. The first order shear deformation theory (FSDT) is used for mathematical modeling of the structure. The motion equations are derived based on energy method and Hamilton's principal. An exact solution is used for stability analysis of the structure. The effects of fluid, volume percent and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field and geometrical parameters of pipe are shown on the stability behaviour of system. Results show that considering the agglomeration of $Fe_2O_3$ nanoparticles, the critical fluid velocity of the concrete pipe is decreased.

분포종동력을 받는 외팔 송수관의 안정성에 관한 연구 (Study on the Stability of Cantilevered Pipe Conveying Fluid Subjected to Distributed Follower Force)

  • 공창덕;박요창
    • 한국항공우주학회지
    • /
    • 제33권4호
    • /
    • pp.27-34
    • /
    • 2005
  • 본 연구에서는 분포 종동력을 받는 외팔 송수관의 안정성에 대하여 연구하였다. 지배 운동 방정식은 확장 해밀턴의 원리에 의해 유도 되었으며, 유한 요소법에 의해 수치해석이 이루어 졌다. 다양한 질량비에 대하여 분포 종동력 값에 따른 임계 유속 값을 결정하였다. 임계 유속에서의 플러터 모드 형상의 차수를 결정하기 위하여 1/12의 주기로 그려, 질량비에 따른 임계 유속의 그래프에 있어서 플러터가 발생하는 고유치 분기의 차수와 함께 명기하였다. 또한 내부감쇠가 시스템의 안정성에 미치는 영향을 조사하였다.

Nonlinear wind-induced instability of orthotropic plane membrane structures

  • Liu, Changjiang;Ji, Feng;Zheng, Zhoulian;Wu, Yuyou;Guo, Jianjun
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.415-432
    • /
    • 2017
  • The nonlinear aerodynamic instability of a tensioned plane orthotropic membrane structure is theoretically investigated in this paper. The interaction governing equation of wind-structure coupling is established by the Von $K\acute{a}rm\acute{a}n's$ large amplitude theory and the D'Alembert's principle. The aerodynamic force is determined by the potential flow theory of fluid mechanics and the thin airfoil theory of aerodynamics. Then the interaction governing equation is transformed into a second order nonlinear differential equation with constant coefficients by the Bubnov-Galerkin method. The critical wind velocity is obtained by judging the stability of the second order nonlinear differential equation. From the analysis of examples, we can conclude that it's of great significance to consider the orthotropy and geometrical nonlinearity to prevent the aerodynamic instability of plane membrane structures; we should comprehensively consider the effects of various factors on the design of plane membrane structures; and the formula of critical wind velocity obtained in this paper provides a more accurate theoretical solution for the aerodynamic stability of the plane membrane structures than the previous studies.

시뮬레이션에 의한 유체 유동 파이프 계의 곡관부의 각도 변화에 따른 고유진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Elbow Angles)

  • 최명진;장승호
    • 한국시뮬레이션학회논문지
    • /
    • 제10권1호
    • /
    • pp.63-65
    • /
    • 2001
  • To investigate the natural frequencies of curved piping systems with various elbow angles conveying flow fluid, a simulation is performed considering Initial tension due to the inside fluid. The system is analyzed by finite element method utilizing straight beam element. Elbow part is meshed using 4 elements, and the initial tension is considered by inserting equivalent terms into the stiffness matrix. Without considering the initial tension, the system becomes unstable, that is, the fundamental natural frequency approaches to zero value fast, as the flow velocity reaches critical value. With the initial tension terms, the system becomes stable where there is no abrupt decrease of the fundamental natural frequency. The change rate of the natural frequency with respect to the flow velocity reduces. As elbow angle increases, the system becomes stiffer, then around 150 degrees of the elbow angle the natural frequency has the largest value, the value decreases after the angle of the largest natural frequency. When angle is between 170 degrees and 179 degrees, the natural frequency is very sensitive. This means that small change of angle results in great change of natural frequency, which is expected to be utilized in the control of the natural frequency of the piping system conveying flow fluid.

  • PDF

유체유동에 의한 복합재료 파이프의 안정성 연구 (The Stability of Composite Pipes Conveying Fluid)

  • 최재운;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 춘계학술대회논문집
    • /
    • pp.904-910
    • /
    • 2001
  • Static and oscillatory loss of stability of composite pipes conveying fluid is investigated. The theory of thin walled beams is applied and transverse shear, rotary inertia, primary and secondary warping effects are incorporated. The governing equations and the associated boundary conditions are derived through Hamilton's variational principle. The governing equations and the associated boundary conditions are transferred to eigenvalues problem which provides the information about the dynamic characteristics of the system. Numerical analysis is performed by using extended Gelerkin method. Critical velocity of fluid is investigated by increasing fiber angle and mass ratio of fluid to pipe including fluid.

  • PDF

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

On the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Panakhli, Panakh G.
    • Coupled systems mechanics
    • /
    • 제6권3호
    • /
    • pp.287-316
    • /
    • 2017
  • This paper studies the particularities of the forced vibration of the hydro-elastic system consisting of a moving elastic plate, compressible viscous fluid and rigid wall. This study is made by employing the discrete-analytical solution method proposed in the paper by the authors (Akbarov and Panakhli (2015)). It is assumed that in the initial state the fluid flow is caused by the axial movement of the plate and the additional lineally-located time-harmonic forces act on the plate and these forces cause additional flow field in the fluid and a stress-strain state in the plate. The stress-strain state in the plate is described by utilizing the exact equations and relations of the linear elastodynamics. However, the additional fluid flow field is described with linearized Navier-Stokes equations for a compressible viscous fluid. Numerical results related to the influence of the problem parameters on the frequency response of the normal stress acting on the plate fluid interface plane and fluid flow velocity on this plane are presented and discussed. In this discussion, attention is focused on the influence of the initial plate axial moving velocity on these responses. At the same, it is established that as a result of the plate moving a resonance type of phenomenon can take place under forced vibration of the system. Moreover, numerical results regarding the influence of the fluid compressibility on these responses are also presented and discussed.

유체 송수관에 부가질량이 미치는 효과에 대한 연구 (Effects of Attached Mass on Tube Conveying Fluid)

  • 정구충;임재훈;최연선
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.270-275
    • /
    • 2003
  • The nonlinear dynamic characteristic of a straight tube conveying fluid with constraints and an attached mass on the tube is examined in this study. An experimental apparatus composed of an elastomer tube conveying water which has an attached mass and constraints is made and comparisons are done between the theoretical results from non-linear equation of motion of piping system and experimental results. And the results show that the tube is destabilized as the mass of the attached mass increases, and stabilized as the position of the attached mass close to the fixed end. In case of a small end-mass, the system shows rich and different types of periodic solutions. For a constant end-mass, the system undergoes a series of bifurcations after the first Hopf bifurcation, as the flow velocity increases, which causes chaotic motion of the tube eventually.

  • PDF

경계조건에 따른 나노파이프의 안정성 특성 (Effect of Boundary Conditions on the Stability Characteristics of Nanopipes)

  • 최종운;송오섭
    • 한국소음진동공학회논문집
    • /
    • 제18권10호
    • /
    • pp.1057-1064
    • /
    • 2008
  • In this paper, static and oscillatory instability of nanopipes conveying fluid and modelled as a thin-walled beam is investigated. Effects of boundary conditions and non-classical transverse shear and rotary inertia are incorporated in this study. The governing equations and the three different boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Variations of critical flow velocity for different boundary conditions of carbon nanopipes are investigated and pertinent conclusion is outlined.