• Title/Summary/Keyword: critical field

Search Result 2,318, Processing Time 0.026 seconds

Non-contact critical current measurement of superconducting coated conductor using Hall Probe (Hall Probe를 이용한 초전도선재의 비접촉 임계전류 측정 방법)

  • Kim, Ho-Sup;Oh, Sang-Soo;Lee, Nam-Jin;Ha, Dong-Woo;Baik, Seung-Kyu;Ko, Rock-Kil;Ha, Hong-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.12-12
    • /
    • 2010
  • The hall probe measurement system was used to measure the critical current distribution of superconducting coated conductor. The system consists of reel to reel moving apparatus, 7 array hall probe, a rotary encoder and permanent magnet. The magnetic field profile across the width of superconducting coated conductor using Bean's critical state model was calculated. The effect of various parameters of the formulas on the magnetic field distribution and the effect of shape and size of artificial defects, which were formed on the surface of SmBa2Cu3O7-d(SmBCO) coated conductor using laser marking system, on the hall probe magnetic field signal of the hall probe measurement system was investigated.

  • PDF

A Study on the Evaluation of Turbine Efficiency through the Performance Test of New Power Plant (신규 화력발전소의 성능 시험을 통한 터빈 효율의 평가에 관한 연구)

  • Kweon, Y.S.;Chung, H.T.;Jung, Y.B.
    • Journal of Power System Engineering
    • /
    • v.5 no.1
    • /
    • pp.11-20
    • /
    • 2001
  • Super-critical type steam power plant, which operates with steam pressure above the super-critical point, has a good reputation recently and is adopted as a new standard of the Korean Electric Power Corporation. The reason for the good reputation lies in it's superior power efficiency. However, the field data of the new power plant for the verification of it's performance are still insufficient, and more empirical data are needed to acquire technologies on the effective operation of it. In this study, the authors analyzed the field test data on power efficiencies got in a super-critical type steam power plant, and evaluated the excellency of the new plant by comparing the efficiency data with the one got in a conventional sub-critical type steam power plant.

  • PDF

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

Measurement and Analysis of the Flux Profiles of the Coated Conductors using Magneto-optical Image and Scanning Hall Probe (Coated conductor에서 magneto-optical image와 scanning hall probe를 이용한 flux profile의 측정 및 분석)

  • Lee, H.Y.;Kwak, K.S.;Rhyee, J.K.;Yoo, J.;Youm, D.
    • Progress in Superconductivity
    • /
    • v.11 no.2
    • /
    • pp.128-134
    • /
    • 2010
  • The magnetic flux profiles in SmBCO and YBCO coated conductors(CC) in the presence of the external field were comparatively investigated by magneto-optic image and scanning hall probe measurements. The current distributions calculated by using the inversion method from measured field profiles show that the decrease of current densities near the edges of SmBCO CC is more significant than those of YBCO CC. Through the comparison of the numerical analysis based on Kim's critical state model and the Brandt and Indenbom's solution, we found that this feature is related to their different field dependant properties of the critical current densities.

The Anisotropy of the London Penetration Depth and the Upper Critical Field in C-doped $MgB_2$ Single Crystals from Reversible Magnetization

  • Kang, Byeong-Won;Park, Min-Seok;Lee, Hyun-Sook;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • We have studied the anisotropy of the London penetration depth of carbon doped $MgB_2$ single crystals, which was obtained from reversible magnetization measurements with the magnetic field both parallel and perpendicular to the c-axis. Similar to the pure $MgB_2$, the anisotropy of the upper critical field ${\gamma}_H$ decrease with temperature while the anisotropy of the London penetration depth ${\gamma}_{\lambda}$ slowly increases with temperature. However, the temperature dependence of ${\gamma}_H$ is drastically reduced and the value of ${\gamma}_{\lambda}$ becomes nearly ~1 as C is introduced. These results indicate that C substitution increases impurity scattering mainly in the $\sigma$ bands. The temperature dependence of the anisotropies agree well with the theoretical predictions with impurity scattering.

Experimental Study for Ferrofluid Couette Flow between Two Coaxial Spheres (동축 구 사이의 자성 유체의 Couette 유동에 관한 연구)

  • 구도연;하옥남;전운학
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-9
    • /
    • 1996
  • This study investigated torque characteristics for Couette flow experimentally under circumstaces that ferrofluids were between two coaxial spheres. Torque measurement was obtained for the situation where the inner sphere was rotating while the outer sphere was kept stationary. The magnetic field was imposed on the fluid, using a bar magnet which was inserted in the inner sphere. In the laminar flow region the torque increase when the magnetic field is applied and the critical Reynolds number is increased. However, in the transition regime, the effect of the magnetic field on the torque characteristics decrease as Reynolds number increases. The value of torque were the same as those of glycerine solution beyond the cirtical Reynolds number. We also made experimental equation which could obtain coefficient of torque within critical Reynolds number in terms of sphere spacing Reynolds number and magnetic properties of ferrofluid.

  • PDF

Critical multi-field load analysis of the piezoelectric/piezomagnetic microplates as an application in sports equipment

  • Yi Zhu
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.485-493
    • /
    • 2023
  • Critical multi-field loads and free vibration responses of the sandwich piezoelectric/piezomagnetic microplate subjected to combination of magnetoelectromechanical loads based on a thickness-stretched higher order shear deformable model using Hamilton's principle. The lateral displacement is assumed summation of bending, shearing and stretching functions. The elasti core is sandwiched by a couple of piezoelectric/piezomagnetic face-sheets subjected to electromagnetocmechanical loads. The work of external force is calculated with considering the in-plane mechanical, electrical and magnetic loads based on piezomagnetoelasticity relations. The critical multi field loading and natural frequency analysis are performed to investigate influence of geometric and loading parameters on the responses. A verification is performed for justification of the numerical results.

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.