• Title/Summary/Keyword: critical experiment

Search Result 943, Processing Time 0.03 seconds

Forced Vibration Modeling of Rail Considering Shear Deformation and Moving Magnetic Load (전단변형과 시간변화 이동자기력을 고려한 레일의 강제진동모델링)

  • Kim, Jun Soo;Kim, Seong Jong;Lee, Hyuk;Ha, Sung Kyu;Lee, Young-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.12
    • /
    • pp.1547-1557
    • /
    • 2013
  • A forced vibration model of a rail system was established using the Timoshenko beam theory to determine the dynamic response of a rail under time-varying load considering the damping effect and stiffness of the elastic foundation. By using a Fourier series and a numerical method, the critical velocity and dynamic response of the rail were obtained. The forced vibration model was verified by using FEM and Euler beam theory. The permanent deformation of the rail was predicted based on the forced vibration model. The permanent deformation and wear were observed through the experiment. Parametric studies were then conducted to investigate the effect of five design factors, i.e., rail cross-section shape, rail material density, rail material stiffness, containment stiffness, and damping coefficient between rail and containment, on four performance indices of the rail, i.e., critical velocity, maximum deflection, maximum longitudinal stress, and maximum shear stress.

The effect of grid number and the location and size of the fire source on the critical velocity in a road tunnel fire (도로터널 임계풍속 산정에 격자개수 및 화원의 크기와 위치가 미치는 영향)

  • Lee, Seung-Chul;Kim, Sang-Il
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.3
    • /
    • pp.183-195
    • /
    • 2012
  • This study conducted comparative analysis to estimate critical velocity in tunnel fire under variation of grid number and the location and size of the fire source using three-dimensional computational fluid dynamics. In the target tunnel, by one-dimensional way, the calculated critical velocity in the tunnel, 2.22 m/s was estimated, if appling hydraulic diameter, instead of the tunnel height. According to six numerical analysis, each grid number has different position, temperature, and CO concentration of back-layering. In the case of the subject, the case 1 with 0.84 million grid was found to be the most ideal. According to the location and size of the fire source, after three cases for three-dimensional numerical analysis was performed, it is resulted that the location and size of the fire source affect the critical velocity, because air velocity distribution, temperature distribution and CO concentration distribution showed different each case. This is due to the difference of heat exchange area and locations. Therefore, it is necessary to decide appropriate grid number, and the location and size of the fire source for processing techniques through comparison with actual experiment results and three-dimensional analysis.

The Effects of Health Assessment Practical Education through Scenario on Communicative Competence, Critical Thinking Disposition and Academic Achievement among Nursing Studuents' in University (시나리오를 통한 건강사정 실습교육이 간호대학생의 의사소통능력, 비판적 사고 성향 및 학업성취에 미치는 효과)

  • Kim, Hey-Kyoung;Kim, Hyang-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.930-941
    • /
    • 2019
  • The purpose of this study was to investigate the effect of health assessment practical education through scenario on communicative competence, critical thinking diposition and academic achievement among nursing students' in university. A nonequivalent control group pretest-posttest design was used to measure. A survey was held to the students who are taking a health assessment practical class for 2grade in J university in Chungbuk and P university in G-do. Participants in a health assessment practical through scenario class and traditional health assessment class were 35 experiment group students and 34 control group students who attended 16 weeks. Effects were evaluated through pre and post tests that included measurements. As a result, the experimental group is more capable of communicative competence (t=2,797, p=.007), critical thinking disposition(t=2,406, p=.019), ability to collecting information(t=2,977, p=.004), problem awareness competence(t=3.584, p=.001) has increased statistically significantly than the control group. Therefore, Therefore, this study could be used that health assessment practical education through scenarios to improve nursing students' communicative competence, critical thinking disposition, collecting information competence, and problem awareness competence.

Study on Rheological Properties of Mortar for the Application of 3D Printing Method (3D 프린팅 공법 적용을 위한 모르타르 구성성분 변화에 따른 레올로지 특성 연구)

  • Lee, Hojae;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2018
  • In this study, an experiment was conducted to analyze mortar based rheology for 3D printing method application. The tendency of rheological properties due to the change of W/B, binder type, replacement ratio, and super plasticizer which have a great influence on the flow characteristics of concrete was experimentally analyzed. Experiments were carried out by dividing into paste and mortar. In the paste experiment, rheology was analyzed by setting W/B, binder type, replacement ratio, and super plasticizer dosage as main variables. In the mortar experiment, the rheological properties of W/B and sand ratio were analyzed. As a result, as the W/B was increased, the viscosity decreased and the FA ratio to replace FA increased and the viscosity increased. In order to increase the fluidity, substitution of only 5% of SF reduces the shear stress and the viscosity is reduced by about 83%. Mortar rheological evaluation shows that there is a critical section where a large change occurs in the W/B 30 to 40% section. Also, in the same W/B, it is analyzed that there is a critical section where the shear stress increases more than twice in the sand ratio of 50~60%.

A Study on the Analysis of Driver's Visual Behavior Characteristics according to the Type of Curve Radius (곡선반경 유형에 따른 운전자 시선특성분석)

  • Song, Byung-Kun;Lim, Joon-Bum;Lee, Soo-Beom;Park, Jin-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.117-126
    • /
    • 2012
  • Understanding driver's characteristic of visual activity is important process because driver depends on a visual signal more than 90% for getting outside information needed to drive, thus a series of driving, including perception, judgement, and activity, is completed. This study analyzes quantified driver's sight range in curved section where recognition of various information is critical due to biggest speed change among sections. Simulation is utilized for this study because of safety problem on field experiment and difficulties in using equipment. Building 6 roads that have different in curve radius by virtual driving map, experiment is carried out recruiting 30 people. Through analytical researches, it shows that drivers keep an eye on direction of driving, and driver's visual range is narrowed on left curve than right curve, and the more curve radius become small, the more drivers see in narrow angle.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.

Optimal Die Profile Design in Tube Drawing Process for Prevention of Material Fracture (파단방지를 위한 튜브인발공정 최적 금형형상 설계에 관한 연구)

  • Lee, Sang-Kon;Kim, Sang-Woo;Lee, Young-Seon;Lee, Jung-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.78-84
    • /
    • 2006
  • The objective of this study is to design the optimal die profile that can prevent material fracture in the tube drawing process for automobile steering input shaft. First, the CDV(Critical Damage Value) of material is obtained by the compression test and FE-analysis. The occurrence of fracture is estimated by the FE-analysis considering the CDV. In order to achieve the objective of this study, optimization technique and FE-analysis are applied. FPS(Flexible Polyhedron Search) method, which is one of the non-gradient optimization techniques often used in engineering, is used to search optimal die profile. The drawing die profile is represented by Bezier-curve to generate all the possible die profile. Using FPS method and FE-analysis the optimal drawing die profile is determined. To verify tile effectiveness of the redesigned optimal die, the tube drawing experiment is performed. In the experimental result, it is possible to produce sound product without material fracture using the redesigned optimal die.

An Experimental Study on the Properties of Ultra Rapid Hardening Mortar Using Magnesia-Phosphate Cement (마그네시아 인산염 시멘트를 사용한 보수용 초속경 모르타르의 특성에 관한 실험적 연구)

  • Ahn, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.109-116
    • /
    • 2007
  • Building structures are generally large in size and have a long life, and the construction of such structures requires the investment of a huge amount of money and social infrastructure. Furthermore, building structures are closely related to people's life. Recently, however, the rapid development of society has been worsening air pollution, which is in turn accelerating the degradation of building structures. Thus, the safety of building structure is emerging as a critical issue. To cope with this problem, the government enacted "The Special Act on Safety Control for Infrastructure" but we need engineers' higher concern over the maintenance and reinforcement of existing structures. Recently researches are being made actively on repair mortar using ultra rapid hardening cement for recovering the performance of structures. The present study conducted an experiment on the basic physical properties of ultra rapid hardening mortar for repairing and reinforcing building structures using magnesia cement and mono-ammonium phosphate. In the experiment, we changed the water-cement ratio and carried out replacement at different ratio of MAP/MgO(%). We used retarder to have working life, and made comparative analysis through evaluating working life and fluidity and measuring strength by age.

How Many Parameters May Be Displayed on a Large Scale Display Panel\ulcorner

  • Lee, Hyun-chul;Sim, Bong-Shick;Oh, In-suk;Cha, Kyoung-ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.254-259
    • /
    • 1995
  • Large scale display panel(LSDP) is a main component in the next generation main control rooms. LSDP is located at the front of VDU-based operator's workstation and plays an important role in providing operators with overall information of plant status through mimic diagram, text/digit, graph, and so on. A critical matter determined at the first stage of LSDP design is how much information is displayed, because the information density of LSDP affects operator's performance. Many human factors guidelines recommend low information density of displays to avoid degrade of operator's performance, but doesn't provide a useful limit of information density. In this paper, we considered information density as the number of plant parameters and investigated the proper number of plant parameters through a human factors experiment. The experiment with 4 subjects was carried out and response time, error, and heart rate variation as criterion measures were recorded and analyzed. As the results, it is identified that the proper number of parameters in a LSDP is about thirty.

  • PDF

Development of Quantification Models on Visual and Tactile Design Characteristics for the Luxuriousness of Interior Covering Materials (인테리어 내장재의 고급감에 관한 시각 및 촉각변수의 수량화 모형 개발)

  • Bahn, Sangwoo;Yun, Myung Hwan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.393-401
    • /
    • 2007
  • Affective aspects of design attributes such as color, Pattern, and texture are important to the overall impression and the success of interior products. Among all the interior materials, wallpapers and flooring materials take up largest construction area and they are main components in creating affective impression for customers. This study aims to investigate the relationship between luxuriousness and related affective variables and design elements of wallpapers and flooring materials. The approach consists of 3 steps: (1) selecting related affective features and product design attributes through a literature survey, opinion of expert panel, and focus group interview, (2) conducting evaluation experiments, and (3) developing Kansei models using multivariate statistical analysis and analyzing critical attributes. Evaluation experiment was conducted using a questionnaire made up of 7-point scale and 100-point scale and 30 housewives and 20 interior designers participated in the evaluation experiment. The result of evaluation was analyzed through principal component regression and quantification I analysis. As a result of analyzing the survey data, the relationship between luxuriousness and related affective features and product design attributes was identified, moreover a optimal combination of the design component was identified. Consequently, it is expected that the results of the study would be a basis of the concept of emotion-based design by giving insights about how customers perceive the luxuriousness and suggesting the optimal combination, and providing specific quantitative design guidelines.