Optimal Die Profile Design in Tube Drawing Process for Prevention of Material Fracture

파단방지를 위한 튜브인발공정 최적 금형형상 설계에 관한 연구

  • 이상곤 (부산대 대학원 정밀기계공학과) ;
  • 김상우 (한국기계연구원 소성성형연구센터) ;
  • 이영선 (한국기계연구원 소성성형연구센터) ;
  • 이정환 (한국기계연구원 소성성형연구센터) ;
  • 김병민 (부산대학교 정밀정형 및 금형가공연구소)
  • Published : 2006.11.01

Abstract

The objective of this study is to design the optimal die profile that can prevent material fracture in the tube drawing process for automobile steering input shaft. First, the CDV(Critical Damage Value) of material is obtained by the compression test and FE-analysis. The occurrence of fracture is estimated by the FE-analysis considering the CDV. In order to achieve the objective of this study, optimization technique and FE-analysis are applied. FPS(Flexible Polyhedron Search) method, which is one of the non-gradient optimization techniques often used in engineering, is used to search optimal die profile. The drawing die profile is represented by Bezier-curve to generate all the possible die profile. Using FPS method and FE-analysis the optimal drawing die profile is determined. To verify tile effectiveness of the redesigned optimal die, the tube drawing experiment is performed. In the experimental result, it is possible to produce sound product without material fracture using the redesigned optimal die.

Keywords

References

  1. Amborn, P., Frielingsdorf, H., Ghosh, S. K. and Grulich, K., 'From Metal Cutting to Metal Forming Modern Side-Shafts for Passenger Car: Manufacturing Aspects,' J. Mater. Process. Technol., Vol. 48, pp. 3-12, 1995 https://doi.org/10.1016/0924-0136(94)01627-D
  2. Altan, T., Oh, S. I. and Gegel, H. L., 'Metal Forming: Fundamentals and Applications,' ASM, pp. 48-53, 1989
  3. DEFORM TM-2D, SFTC, 1995
  4. Cockcroft, M. G. and Latham, D. J., 'Ductility and The Workability of Metals,' J. Inst. Metals, Vol. 96, pp. 33-39, 1968
  5. Tomita, Y., 'Optimization of Plastic Deformation Processes-Determination of The Die Profile Using The Minimum Energy Principle,' J. JSTP, Vol. 24, pp. 1147-1150, 1983
  6. Fourment, L. and Chenot, J. L., 'Optimal Design for Non-Steady State Parameters,' Comput. Meth. Appl. Mech. Eng., Vol. 39, pp. 33-50, 1996 https://doi.org/10.1002/(SICI)1097-0207(19960115)39:1<33::AID-NME844>3.0.CO;2-Z
  7. Lee, S. K., Ko, D. C. and Kim, B. M., 'Control of Microstructure in Hot Forging Process by Designing of Optimal Preform Shape,' Annual Fall Conference of the KSPE, pp. 1085-1088, 1999
  8. Kishor, N. and Kumar, D. R., 'Optimization of Initial Blank Shape to Minimize Earing in Deep Drawing Using Finite Element Method,' J. Mater. process. Technol., Vol. 130-131, pp. 20-30, 2002 https://doi.org/10.1016/S0924-0136(02)00790-2
  9. Byon, S. M. and Hwang, S. M., 'Die Shape Optimal Design in Cold and Hot Extrusion,' J. Master. process. Technol., Vol. 138, pp. 316-324, 2003 https://doi.org/10.1016/S0924-0136(03)00092-X
  10. Chong, T. H. and Lee, J. S., 'A Design Method of Gear Trains Using a Genetic Algorithm,' Int. J. KSPE, Vol. 1, No. 1, pp. 66-70, 2000
  11. Himmelblau, D. M., 'Applied Nonlinear Programming,' McGraw-Hill, 1872
  12. Anand, V. B., 'Computer Graphics and Geometric Modeling for Engineers,' John Wiley & Sons, 1996