• Title/Summary/Keyword: critical equation

Search Result 984, Processing Time 0.027 seconds

Katayama Equation Modified on the Basis of Critical-Scaling Theory (임계 축척 이론을 이용한 카타야마 식의 수정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.185-191
    • /
    • 2006
  • It is desirable to have an accurate expression on the temperature dependence of surface(or interfacial) tension ${\sigma}$, because most of the interfacial thermodynamic functions can be derived from it. There have been proposed several equations on the temperature dependence of the surface tension, ${\sigma}(T)$. Among them $E{\ddot{o}}tv{\ddot{o}}s$ equation and the one modified by Katayama, which is called Katayama equation, for improving accuracies of $E{\ddot{o}}tv{\ddot{o}}s$ equation close to critical points, have been most well-known. In this article Katayama equation is interpreted on the basis of the cell model to understand the nature of the equation. The cell model results in an expression very similar to Katayama equation. This implies that, although $E{\ddot{o}}tv{\ddot{o}}s$ and Katayama equations were obtained on the basis of experimental results, they have a sound theoretical background. The Katayama equation is also modified with the phase volume replaced with a critical scaling expression. The modified Katayama equation becomes a power-law equation with the exponent slightly different from the value obtained by critical-scaling theory. This implies that Katayama equation can be replaced by a critical-scaling equation which is proven to be accurate.

The Critical Point Equation on 3-dimensional α-cosymplectic Manifolds

  • Blaga, Adara M.;Dey, Chiranjib
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.177-183
    • /
    • 2020
  • The object of the present paper is to study the critical point equation (CPE) on 3-dimensional α-cosymplectic manifolds. We prove that if a 3-dimensional connected α-cosymplectic manifold satisfies the Miao-Tam critical point equation, then the manifold is of constant sectional curvature -α2, provided Dλ ≠ (ξλ)ξ. We also give several interesting corollaries of the main result.

STABLE MINIMAL HYPERSURFACES IN A CRITICAL POINT EQUATION

  • HWang, Seung-Su
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.775-779
    • /
    • 2005
  • On a compact n-dimensional manifold $M^n$, a critical point of the total scalar curvature functional, restricted to the space of metrics with constant scalar curvature of volume 1, satifies the critical point equation (CPE), given by $Z_g\;=\;s_g^{1\ast}(f)$. It has been conjectured that a solution (g, f) of CPE is Einstein. The purpose of the present paper is to prove that every compact stable minimal hypersurface is in a certain hypersurface of $M^n$ under an assumption that Ker($s_g^{1\ast}{\neq}0$).

CRITICAL BLOW-UP AND EXTINCTION EXPONENTS FOR NON-NEWTON POLYTROPIC FILTRATION EQUATION WITH SOURCE

  • Zhou, Jun;Mu, Chunlai
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1159-1173
    • /
    • 2009
  • This paper deals with the critical blow-up and extinction exponents for the non-Newton polytropic filtration equation. We reveals a fact that the equation admits two critical exponents $q_1,\;q_2\;{\in}\;(0,+{\infty})$) with $q_1\;{<}\;q_2$. In other words, when q belongs to different intervals (0, $q_1),\;(q_1,\;q_2),\;(q_2,+{\infty}$), the solution possesses complete different properties. More precisely speaking, as far as the blow-up exponent is concerned, the global existence case consists of the interval (0, $q_2$]. However, when q ${\in}\;(q_2,+{\infty}$), there exist both global solutions and blow-up solutions. As for the extinction exponent, the extinction case happens to the interval ($q_1,+{\infty}$), while for q ${\in}\;(0,\;q_1$), there exists a non-extinction bounded solution for any nonnegative initial datum. Moreover, when the critical case q = $q_1$ is concerned, the other parameter ${\lambda}$ will play an important role. In other words, when $\lambda$ belongs to different interval (0, ${\lambda}_1$) or (${\lambda}_1$,+${\infty}$), where ${\lambda}_1$ is the first eigenvalue of p-Laplacian equation with zero boundary value condition, the solution has completely different properties.

A Prediction of the Relation between the Disc Brake Temperature and the Hot Judder Critical Speed (주행 중 디스크 온도 변화와 열간 저더 임계속도와의 관계 예측)

  • Kim, Jaemin;Lee, Mingyu;Kim, Bumjin;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this paper, it was studied how the critical speed which could occur hot judder due to disk temperature. Through the dynamometer experiment, we measured the critical velocity and surface temperature when the hot judder occur on the disk break. Also with the critical velocity theory equation and the temperature change graph of factors which used in the equation, we was induced experiment equation including theory equation and experiment values. And it has compared with the method which approach as linea. From this, we predicted the change of critical speed which could occur hot judder due to disk temperature. In addition, critical speed graph has compared with actual driving speed and disc temperature at a vehicle test. Therefore it was estimate to possibility of arising hot judder.

ASYMPTOTICALLY LINEAR BEAM EQUATION AND REDUCTION METHOD

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.19 no.4
    • /
    • pp.481-493
    • /
    • 2011
  • We prove a theorem which shows the existence of at least three ${\pi}$-periodic solutions of the wave equation with asymptotical linearity. We obtain this result by the finite dimensional reduction method which reduces the critical point results of the infinite dimensional space to those of the finite dimensional subspace. We also use the critical point theory and the variational method.

THE CRITICAL POINT EQUATION ON A FOUR DIMENSIONAL WARPED PRODUCT MANIFOLD

  • Hwang, Seung-Su;Chang, Jeong-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.4
    • /
    • pp.679-692
    • /
    • 2006
  • On a compact oriented n-dimensional manifold $(M^n,\;g)$, it has been conjectured that a metric g satisfying the critical point equation (2) should be Einstein. In this paper, we prove that if a manifold $(M^4,\;g)$ is a 4-dimensional oriented compact warped product, then g can not be a solution of CPE with a non-zero solution function f.

ON THE EXISTENCE OF STABLE MINIMAL HYPERSURFACES OF THE THREE DIMENSIONAL CRITICAL POINT EQUATION

  • CHANG, JEONGWOOK
    • Honam Mathematical Journal
    • /
    • v.28 no.3
    • /
    • pp.409-415
    • /
    • 2006
  • On a compact oriented smooth 3-dimensional manifold (M, g), we consider the critical point equation(CPE) defined as $z_g=s^{{\prime}*}_g(f)$. Under CPE, it is shown in [5] that every stable minimal hypersurface in M is contained in ${\varphi}^{-1}(0)$ for ${\varphi}{\in}$ ker $s^{{\prime}*}_g$. We study analytic and geometric conditions under which the stable minimal hypersurface in M does not exist.

  • PDF