• Title/Summary/Keyword: critical currents

Search Result 160, Processing Time 0.023 seconds

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

AC Loss Characteristics of a Single-layered Cylindrical High Temperature Superconductor (단층원통형 고온초전도도체의 교류손실 특성)

  • Ma, Yong-Hu;Li, Zhu-Yong;Ryu, Kyung-Woo;Sohn, Song-Ho;Hwang, Si-Dol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.626-630
    • /
    • 2007
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables and fault current limiters. In these applications, a cylindrical HTS conductor is often used. In commercialization of these apparatuses, AC loss is a critical factor but not elucidated completely because of complexities in its measurement, e.g. non-uniform current distribution and phase difference between currents flowing in an individual HTS tape. We have prepared two cylindrical conductors composed of a Bi-2223 tape with different critical current density. In this paper, the AC loss characteristics of the conductors have been experimentally investigated and numerically analyzed. The result show that the measured losses for two conductors are not dependent on both arrangements and contact positions of a voltage lead. This implies that most of loss flux is only in the conductors. The loss for the Bi-2223 conductor with low critical current density is in good agreement with the calculated loss from Monoblock model, whereas the loss measured for the Bi-2223 conductor with high critical current density doesn't coincide with the loss calculated from the Monoblock model. The measured loss is also different from numerically calculated one based on the polygon model especially in low transport current.

The Powder Synthesis of (Bi,Pb)-2223 System Superconductor by Oxalate Method and Thick Film Preparation (옥살산염법에 의한 (Bi, Pb)-2223계 초전도 분말 합성과 후막 제조)

  • 하성원;김형태;이응상
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.10
    • /
    • pp.1083-1091
    • /
    • 1997
  • As one of the chemical powder fabrication methods, the powder preparation method by using oxalate has the following advantages; (1) easy to control the chemical stoichiometry, (2) easy to fabricate homogeneous and fine particles, and (3) easy to be thermaly decomposed at low temperature. In the present study, the initial morphology and size distribution of the powder were controlled and the homogeniaty was improved. By carefully controlling the pH with NH4OH, the Bi(Pb)-Sr-Ca-Cu-O superconducting powders were prepared and investigated for their properties. The microstructures and the superconducting properties of the pelletized samples were investigated. Also, the microstructures and electrical properties of the samples prepared by tape casting method were investigated. The fabricated powders were spherical with less than 400 nm, but most of them were agglomerated to be 1~3 ${\mu}{\textrm}{m}$ in size. The critical temperature of the pelletized sample annealed at 84$0^{\circ}C$ for 72 hours in air was 110K. And the critical currents of annealed samples in air prepared by tape casting process for 24 hours and 72 hours were 0.6 A (Jc=600A/$\textrm{cm}^2$) and 1.9A (Jc=1, 900A/$\textrm{cm}^2$) respectively.

  • PDF

Design of the Inverter Motor Drive System Applied to PFC using Interleaving Method (인터리빙 PFC를 적용한 모터구동 인버터 시스템 설계)

  • Yoon, Seong-Sik;Choi, Hyun-Eui;Kim, Tae-Woo;Ahn, Ho-Kyun;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.4
    • /
    • pp.14-19
    • /
    • 2010
  • In this paper, using interleaved power factor correction how to improve the inverter efficiency studied. Interleaved method can reduce the conduction losses and the inductor energy. Generally, critical conduction mode (CRM) boost PFC converter used low power level because of the high peak currents. if you use the interleaved mode, CRM PFC can be used medium or high power application. interleaved CRM PFC can reduce current ripple for higher system reliability and size of buck capacitor and EMI filter size. Interleaved CRM PFC that is installed in front of inverter can maintain the constant voltage regardless of the input voltage.

The Change of Beach Processes at the Coastal Zone with the Impact of Tide (조석(潮汐)의 영향(影響)이 있는 연안(沿岸)해역(海域)에서의 해안과정(海岸過程)의 변화(變化))

  • Kim, Sang-Ho;Lee, Joong-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.257-262
    • /
    • 2002
  • Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered from accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the case of a narrow tidal range at Nakdong river's estuary area to understand the effect of water level variation on the littoral drift. Simulations are conducted in terms of incident wave direction and tidal level. Characteristics of wave transformation, nearshore current, sediment transport, and bottom change are shown and analyzed. We found from the simulation that the tidal level impact to the sediment transport is very important and we should apply the numerical model with different water level to analyze sediment transport mechanism correctly. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF

Operational Characteristics of Transformer-Type SFCL with or without Neutral Line between the Secondary windings and Superconducting units (2차 권선과 초전도 사이의 중성선 유무에 따른 변압기형 초전도 한류기의 동작특성)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Go, Sung-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1268-1273
    • /
    • 2011
  • The study on power capacity increase of superconducting fault current limiter (SFCL) is one of the most important researches to apply a SFCL in the power system. To achieve this, we thought that the unbalanced quenching problem generated in series connection of superconducting units should be solved. In this paper, we investigated the quenching characteristics of superconducting units in the transformer-type SFCL with or without the neutral line between secondary windings and superconducting units. In case of transformer-type SFCL without neutral line, the connection structure of superconducting units is identical to that of the resistive-type SFCL connected in series. Therefore, the unbalanced quenching was occurred by difference of critical current between superconducting units. However, in case of transformer-type SFCL with neutral line, the superconducting units with different critical current were simultaneously quenched. It was because the currents induced by secondary winding were separately flowed through the superconducting units. By these results, we confirmed that the resistances and consumption powers of the superconducting units were equally generated.

Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics

  • Kim, Yong-Bin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.3
    • /
    • pp.93-105
    • /
    • 2010
  • Complementary metal-oxide-semiconductor (CMOS) technology scaling has been a main key for continuous progress in silicon-based semiconductor industry over the past three decades. However, as the technology scaling enters nanometer regime, CMOS devices are facing many serious problems such as increased leakage currents, difficulty on increase of on-current, large parameter variations, low reliability and yield, increase in manufacturing cost, and etc. To sustain the historical improvements, various innovations in CMOS materials and device structures have been researched and introduced. In parallel with those researches, various new nanoelectronic devices, so called "Beyond CMOS Devices," are actively being investigated and researched to supplement or possibly replace ultimately scaled conventional CMOS devices. While those nanoelectronic devices offer ultra-high density system integration, they are still in a premature stage having many critical issues such as high variations and deteriorated reliability. The practical realization of those promising technologies requires extensive researches from device to system architecture level. In this paper, the current researches and challenges on nanoelectronics are reviewed and critical tasks are summarized from device level to circuit design/CAD domain to better prepare for the forthcoming technologies.

Lifetime prediction of optocouplers in digital input and output modules based on bayesian tracking approaches

  • Shin, Insun;Kwon, Daeil
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • Digital input and output modules are widely used to connect digital sensors and actuators to automation systems. Digital I/O modules provide flexible connectivity extension to numerous sensors and actuators and protect systems from high voltages and currents by isolation. Components in digital I/O modules are inevitably affected by operating and environmental conditions, such as high voltage, high current, high temperature, and temperature cycling. Because digital I/O modules transfer signals or isolate the systems from unexpected voltage and current transients, their failures may result in signal transmission failures and damages to sensitive circuitry leading to system malfunction and system shutdown. In this study, the lifetime of optocouplers, one of the critical components in digital I/O modules, was predicted using Bayesian tracking approaches. Accelerated degradation tests were conducted for collecting the critical performance parameter of optocouplers, current transfer ratio (CTR), during their lifetime. Bayesian tracking approaches, including extended Kalman filter and particle filter, were applied to predict the failure. The performance of each prognostic algorithm was then compared using accuracy and robustness-based performance metrics.

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

Variation of Beach Processes and Harbor Sedimentation in an Area of Large Tide (조석이 큰 해역에서의 해안과정과 항만퇴적의 변화)

  • 신승호;이중우
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.57-74
    • /
    • 2001
  • In the past, the predictions of beach processes and harbor sedimentation were mainly relied on the hydraulic model tests and empirical methods. In recent years, however, as computers have come into wide use, more accurate models have gradually been developed and thus replaced those conventional methods. For prediction of topographical change near the coastal area, we need informations of wave and current conditions in the numerical model which should be calculated in advance. Numerical model introduced in this study combines wave refraction-diffraction, breaking, bottom friction, lateral mixing, and critical shear stress and three sub-models for simulating waves, currents, and bottom change were briefly discussed. Simulations of beach processes and harbor sedimentation were also described at the coast neighboring Bangpo Harbor, Anmyundo, Chungnam, where the area has suffered accumulation of drifting sand in a small fishing harbor with a wide tidal range. We also made model test for the new layout of the harbor and planned south breakwater for preventing intrusion of sand. Although the model study gave reasonable description of beach processes and harbor sedimentation mechanism, it is necessary to collect lots of field observation data, including waves, tides and bottom materials, etc. for better prediction.

  • PDF