Browse > Article

Painful Channels in Sensory Neurons  

Lee, Yunjong (Sensory Research Center, CRI, College of Pharmacy, Seoul National University)
Lee, Chang-Hun (Sensory Research Center, CRI, College of Pharmacy, Seoul National University)
Oh, Uhtaek (Sensory Research Center, CRI, College of Pharmacy, Seoul National University)
Abstract
Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.
Keywords
Analgesics; Channels; Dorsal Root Ganglion; Nociceptor; Pain;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 31  (Related Records In Web of Science)
연도 인용수 순위
1 Acosta, C. G. and Lopez, H. S. (1999) delta opioid receptor modulation of several voltage-dependent Ca(2+) currents in rat sensory neurons. J. Neurosci. 19, 8337-8348
2 Akopian, A. N., Sivilotti, L., and Wood, J. N. (1996) A tetrodotoxin- resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257-262   DOI   ScienceOn
3 Babes, A., Amuzescu, B., Krause, U., Scholz, A., Flonta, M. L., et al. (2002) Cooling inhibits capsaicin-induced currents in cultured rat dorsal root ganglion neurones. Neurosci. Lett. 317, 131-134   DOI   ScienceOn
4 Babinski, K., Le, K. T., and Seguela, P. (1999) Molecular cloning and regional distribution of a human proton receptor subunit with biphasic functional properties. J. Neurochem. 72, 51-57   DOI   ScienceOn
5 Burnstock, G. and Wood, J. N. (1996) Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr. Opin. Neurobiol. 6, 526-532   DOI   ScienceOn
6 Caterina, M. J. and Julius, D. (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu. Rev. Neurosci. 24, 487-517   DOI   ScienceOn
7 Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J., and Julius, D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436-441   DOI   ScienceOn
8 Cockayne, D. A., Hamilton, S. G., Zhu, Q. M., Dunn, P. M., Zhong, Y., et al. (2000) Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011-1015   DOI   ScienceOn
9 Coutts, A. A., Jorizzo, J. L., Eady, R. A., Greaves, M. W., and Burnstock, G. (1981) Adenosine triphosphate-evoked vascular changes in human skin: mechanism of action. Eur. J. Pharmacol. 76, 391-401   DOI   ScienceOn
10 Davis, K. D., Meyer, R. A., and Campbell, J. N. (1993) Chemosensitivity and sensitization of nociceptive afferents that innervate the hairy skin of monkey. J. Neurophysiol. 69, 1071-1081
11 Evans, A. R., Nicol, G. D., and Vasko, M. R. (1996) Differential regulation of evoked peptide release by voltage-sensitive calcium channels in rat sensory neurons. Brain Res. 712, 265-273   DOI   ScienceOn
12 Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., et al. (2000) Nomenclature of voltage-gated sodium channels. Neuron 28, 365-368   DOI   ScienceOn
13 Gudermann, T. and Flockerzi, V. (2005) TRP channels as new pharmacological targets. Naunyn. Schmiedebergs Arch. Pharmacol. 371, 241-244   DOI
14 Hamilton, S. G., McMahon, S. B., and Lewin, G. R. (2001) Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J. Physiol. 534, 437-445   DOI   ScienceOn
15 Hatakeyama, S., Wakamori, M., Ino, M., Miyamoto, N., Takahashi, E., et al. (2001) Differential nociceptive responses in mice lacking the alpha(1B) subunit of N-type Ca(2+) channels. Neuroreport 12, 2423-2427   DOI   ScienceOn
16 Holz, G. G. 4th, Shefner, S. A., and Anderson, E. G. (1985) Serotonin depolarizes type A and C primary afferents: an intracellular study in bullfrog dorsal root ganglion. Brain Res 327, 71-79   DOI   ScienceOn
17 Jia, Y., Wang, X., Varty, L., Rizzo, C. A., Yang, R., et al. (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L272-278   DOI   ScienceOn
18 Honma, Y., Yamakage, M., and Ninomiya, T. (1999) Effects of adrenergic stimulus on the activities of $Ca^{2+}$ and $K^+$ channels of dorsal root ganglion neurons in a neuropathic pain model. Brain Res. 832, 195-206   DOI   ScienceOn
19 Hu, H. Z., Gu, Q., Wang, C., Colton, C. K., Tang, J., et al. (2004) 2-aminoethoxydiphenyl borate is a common activator of TRPV1, TRPV2, and TRPV3. J. Biol. Chem. 279, 35741-35748   DOI   ScienceOn
20 Inoue, K., Tsuda, M., and Koizumi, S. (2004) ATP receptors in pain sensation. Nippon Yakurigaku Zasshi 124, 228-233   DOI   ScienceOn
21 Kang, M. G., Chen, C. C., Felix, R., Letts, V. A., Frankel, W. N., et al. (2001) Biochemical and biophysical evidence for gamma 2 subunit association with neuronal voltage-activated $Ca^{2+}$ channels. J. Biol. Chem. 276, 32917-32924   DOI   ScienceOn
22 Kim, Y., Bang, H., and Kim, D. (2000) TASK-3, a new member of the tandem pore K(+) channel family. J. Biol. Chem. 275, 9340-9347   DOI   ScienceOn
23 Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., et al. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103, 525-535   DOI   ScienceOn
24 McCleane, G. J., Suzuki, R., and Dickenson, A. H. (2003) Does a single intravenous injection of the 5HT3 receptor antagonist ondansetron have an analgesic effect in neuropathic pain? A double-blinded, placebo-controlled cross-over study. Anesth. Analg. 97, 1474-1478
25 Nilius, B., Prenen, J., Vennekens, R., Hoenderop, J. G., Bindels, R. J., et al. (2001) Pharmacological modulation of monovalent cation currents through the epithelial $Ca^{2+}$ channel ECaC1. Br. J. Pharmacol. 134, 453-462   DOI   ScienceOn
26 Montell, C. (2001) An end in sight to a long TRP. Neuron 30, 3-5   DOI   ScienceOn
27 Moqrich, A., Hwang, S. W., Earley, T. J., Petrus, M. J., Murray, A. N., et al. (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307, 1468-1472   DOI   ScienceOn
28 Nicholas, R. S., Winter, J., Wren, P., Bergmann, R., and Woolf, C. J. (1999) Peripheral inflammation increases the capsaicin sensitivity of dorsal root ganglion neurons in a nerve growth factor-dependent manner. Neuroscience 91, 1425-1433   DOI   ScienceOn
29 Nilius, B., Vriens, J., Prenen, J., Droogmans, G., and Voets, T. (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am. J. Physiol. Cell Physiol. 286, C195-205   DOI   ScienceOn
30 Numazaki, M. and Tominaga, M. (2004) Nociception and TRP Channels. Curr. Drug Targets CNS Neurol. Disord. 3, 479-485   DOI
31 Peier, A. M., Reeve, A. J., Andersson, D. A., Moqrich, A., Earley, T. J., et al. (2002a) A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046-2049   DOI   ScienceOn
32 Perez-Reyes, E. (2003) Molecular physiology of low-voltageactivated t-type calcium channels. Physiol. Rev. 83, 117-161
33 Premkumar, L. S. and Ahern, G. P. (2000) Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985-990   DOI   ScienceOn
34 Smart, D. and Jerman, J. C. (2000) Anandamide: an endogenous activator of the vanilloid receptor. Trends Pharmacol. Sci. 21, 134   DOI   ScienceOn
35 Reid, G. and Flonta, M. L. (2001) Physiology. Cold current in thermoreceptive neurons. Nature 413, 480   DOI   ScienceOn
36 Scott, K. and Zuker, C. (1998) TRP, TRPL and trouble in photoreceptor cells. Curr. Opin. Neurobiol. 8, 383-388   DOI   ScienceOn
37 Sluka, K. A. (1998) Blockade of N- and P/Q-type calcium channels reduces the secondary heat hyperalgesia induced by acute inflammation. J. Pharmacol. Exp. Ther. 287, 232-237
38 Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. D. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2, 695-702   DOI   ScienceOn
39 Suzuki, M., Watanabe, Y., Oyama, Y., Mizuno, A., Kusano, E., et al. (2003a) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci. Lett. 353, 189-192   DOI   ScienceOn
40 Suzuki, M., Mizuno, A., Kodaira, K., and Imai, M. (2003b) Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278, 22664-22668   DOI   ScienceOn
41 Takahashi, T. and Momiyama, A. (1993) Different types of calcium channels mediate central synaptic transmission. Nature 366, 156-158   DOI   ScienceOn
42 Wang, Y. X., Bezprozvannaya, S., Bowersox, S. S., Nadasdi, L., Miljanich, G., et al. (1998) Peripheral versus central potencies of N-type voltage-sensitive calcium channel blockers. Naunyn. Schmiedebergs Arch. Pharmacol. 357, 159-168   DOI
43 Heyman, I. and Rang, H. P. (1985) Depolarizing responses to capsaicin in a subpopulation of rat dorsal root ganglion cells. Neurosci. Lett. 56, 69-75   DOI   ScienceOn
44 Wood, J. N., Abrahamsen, B., Baker, M. D., Boorman, J. D., Donier, E., et al. (2004) Ion channel activities implicated in pathological pain. Novartis. Found. Symp. 261, 32-40; discussion 40-54
45 Yoshimura, N. and de Groat, W. C. (1999) Increased excitability of afferent neurons innervating rat urinary bladder after chronic bladder inflammation. J. Neurosci. 19, 4644-4653
46 Zheng, J. H. and Chen, J. (2000) Modulatory roles of the adenosine triphosphate P2x-purinoceptor in generation of the persistent nociception induced by subcutaneous bee venom injection in the conscious rat. Neurosci. Lett. 278, 41-44   DOI   ScienceOn
47 Tsien, R. W., Ellinor, P. T., and Horne, W. A. (1991) Molecular diversity of voltage-dependent $Ca^{2+}$ channels. Trends Pharmacol. Sci. 12, 349-354   DOI   ScienceOn
48 Catterall, W. A. (2000) Structure and regulation of voltage-gated $Ca^{2+}$ channels. Annu. Rev. Cell Dev. Biol. 16, 521-555   DOI   ScienceOn
49 Guler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., et al. (2002) Heat-evoked activation of the ion channel, TRPV4. J. Neurosci. 22, 6408-6414
50 Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., et al. (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849-857   DOI   ScienceOn
51 Huang, S. M., Bisogno, T., Trevisani, M., Al-Hayani, A., De Petrocellis, L., et al. (2002) An endogenous capsaicin-like substance with high potency at recombinant and native vanilloid VR1 receptors. Proc. Natl. Acad. Sci. USA 99, 8400-8405
52 Voilley, N., de Weille, J., Mamet, J., and Lazdunski, M. (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J. Neurosci. 21, 8026-8033
53 Zhang, L., Jones, S., Brody, K., Costa, M., and Brookes, S. J. (2004) Thermosensitive transient receptor potential channels in vagal afferent neurons of the mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G983-991   DOI   ScienceOn
54 Gao, X., Wu, L., and O'Neil, R. G. (2003) Temperaturemodulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J. Biol. Chem. 278, 27129-27137   DOI   ScienceOn
55 Kim, D., Park, D., Choi, S., Lee, S., Sun, M., et al. (2003) Thalamic control of visceral nociception mediated by T-type $Ca^{2+}$ channels. Science 302, 117-119   DOI   ScienceOn
56 Novakovic, S. D., Levinson, S. R., Schachner, M., and Shrager, P. (1998) Disruption and reorganization of sodium channels in experimental allergic neuritis. Muscle Nerve 21, 1019-1032   DOI   ScienceOn
57 Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., et al. (2002b) A TRP channel that senses cold stimuli and menthol. Cell 108, 705-715   DOI   ScienceOn
58 Tian, W., Salanova, M., Xu, H., Lindsley, J. N., Oyama, T. T., et al. (2004) Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments. Am. J. Physiol. Renal Physiol. 287, F17-24   DOI   ScienceOn
59 Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., et al. (2002) TRPV3 is a calcium-permeable temperaturesensitive cation channel. Nature 418, 181-186   DOI   ScienceOn
60 Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., et al. (2001) Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957-962   DOI   ScienceOn
61 Gitterman, D. P., Wilson, J., and Randall, A. D. (2005) Functional properties and pharmacological inhibition of ASIC channels in the human SJ-RH30 skeletal muscle cell line. J. Physiol. 562, 759-769
62 Kim, C. H., Oh, Y., Chung, J. M., and Chung, K. (2002) Changes in three subtypes of tetrodotoxin sensitive sodium channel expression in the axotomized dorsal root ganglion in the rat. Neurosci. Lett. 323, 125-128   DOI   ScienceOn
63 Trimmer, J. S. and Rhodes, K. J. (2004) Localization of voltagegated ion channels in mammalian brain. Annu. Rev. Physiol. 66, 477-519   DOI   ScienceOn
64 Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., et al. (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ. Res. 93, 829-838   DOI   ScienceOn
65 Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., et al. (2003) ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819-829   DOI   ScienceOn
66 Cardenas, C. G., Del Mar, L. P., and Scroggs, R. S. (1995) Variation in serotonergic inhibition of calcium channel currents in four types of rat sensory neurons differentiated by membrane properties. J. Neurophysiol. 74, 1870-1879
67 Cummins, T. R., Dib-Hajj, S. D., Black, J. A., Akopian, A. N., Wood, J. N., et al. (1999) A novel persistent tetrodotoxinresistant sodium current in SNS-null and wild-type small primary sensory neurons. J. Neurosci. 19, RC43
68 Shin, J., Cho, H., Hwang, S. W., Jung, J., Shin, C. Y., et al. (2002) Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA 99, 10150-10155
69 Vedder, H. and Otten, U. (1991) Biosynthesis and release of tachykinins from rat sensory neurons in culture. J. Neurosci. Res. 30, 288-299   DOI   ScienceOn
70 Abdi, S., Lee, D. H., and Chung, J. M. (1998) The anti-allodynic effects of amitriptyline, gabapentin, and lidocaine in a rat model of neuropathic pain. Anesth. Analg. 87, 1360-1366   DOI
71 Vellani, V., Zachrisson, O., and McNaughton, P. A. (2004) Functional bradykinin B1 receptors are expressed in nociceptive neurones and are upregulated by the neurotrophin GDNF. J. Physiol. 560, 391-401   DOI   ScienceOn
72 Minke, B. and Cook, B. (2002) TRP channel proteins and signal transduction. Physiol. Rev. 82, 429-472
73 Black, J. A., Dib-Hajj, S., McNabola, K., Jeste, S., Rizzo, M. A., et al. (1996) Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res. Mol. Brain Res. 43, 117-131   DOI   ScienceOn
74 Miller, R. J. (2001) Rocking and rolling with $Ca^{2+}$ channels. Trends Neurosci. 24, 445-449   DOI   ScienceOn
75 Corey, D. P., Garcia-Anoveros, J., Holt, J. R., Kwan, K. Y., Lin, S. Y., et al. (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432, 723-730   DOI   ScienceOn
76 Gothert, M. and Schlicker, E. (1987) Classification of serotonin receptors. J. Cardiovasc. Pharmacol. 10 (Suppl 3), S3?7
77 Gunthorpe, M. J., Harries, M. H., Prinjha, R. K., Davis, J. B., and Randall, A. (2000) Voltage- and time-dependent properties of the recombinant rat vanilloid receptor (rVR1). J. Physiol. 525, 747-759   DOI
78 Hwang, J. H. and Yaksh, T. L. (1997) Effect of subarachnoid gabapentin on tactile-evoked allodynia in a surgically induced neuropathic pain model in the rat. Reg. Anesth. 22, 249-256   DOI   ScienceOn
79 Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., et al. (1997) The capsaicin receptor: a heatactivated ion channel in the pain pathway. Nature 389, 816-824   DOI   ScienceOn
80 Hwang, S. W., Cho, H., Kwak, J., Lee, S. Y., Kang, C. J., et al. (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl. Acad. Sci. USA 97, 6155-6160
81 Oh, U., Hwang, S. W., and Kim, D. (1996) Capsaicin activates a nonselective cation channel in cultured neonatal rat dorsal root ganglion neurons. J. Neurosci. 16, 1659-1667
82 Suh, B. C. and Kim, K. T. (1995) Inhibition of bradykinininduced cytosolic $Ca^{2+}$ elevation by muscarinic stimulation without attenuation of inositol 1,4,5-trisphosphate production in human neuroblastoma SK-N-BE(2)C cells. J. Neurochem. 65, 2124-2130   DOI   ScienceOn
83 Kim, C., Jun, K., Lee, T., Kim, S. S., McEnery, M. W., et al. (2001) Altered nociceptive response in mice deficient in the alpha(1B) subunit of the voltage-dependent calcium channel. Mol. Cell. Neurosci. 18, 235-245   DOI   ScienceOn
84 Bleehen, T. and Keele, C. A. (1977) Observations on the algogenic actions of adenosine compounds on the human blister base preparation. Pain 3, 367-377   DOI   ScienceOn
85 Santicioli, P., Del Bianco, E., Tramontana, M., and Maggi, C. A. (1992) Adenosine inhibits action potential-dependent release of calcitonin gene-related peptide- and substance P-like immunoreactivities from primary afferents in rat spinal cord. Neurosci. Lett. 144, 211-214   DOI   ScienceOn
86 Chung, M. K., Lee, H., and Caterina, M. J. (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J. Biol. Chem. 278, 32037-32046   DOI   ScienceOn
87 Jordt, S. E., Bautista, D. M., Chuang, H. H., McKemy, D. D., Zygmunt, P. M., et al. (2004) Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260-265   DOI   ScienceOn
88 Nealen, M. L., Gold, M. S., Thut, P. D., and Caterina, M. J. (2003) TRPM8 mRNA is expressed in a subset of coldresponsive trigeminal neurons from rat. J. Neurophysiol. 90, 515-520   DOI   ScienceOn
89 Bevan, S., Hothi, S., Hughes, G., James, I. F., Rang, H. P., et al. (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107, 544-552   DOI   ScienceOn
90 Sakata, Y., Saegusa, H., Zong, S., Osanai, M., Murakoshi, T., et al. (2001) Analysis of Ca(2+) currents in spermatocytes from mice lacking Ca(v)2.3 (alpha(1E)) Ca(2+) channel. Biochem. Biophys. Res. Commun. 288, 1032-1036   DOI   ScienceOn
91 Todorovic, S. M., Meyenburg, A., and Jevtovic-Todorovic, V. (2002) Mechanical and thermal antinociception in rats following systemic administration of mibefradil, a T-type calcium channel blocker. Brain Res. 951, 336-340   DOI   ScienceOn
92 Hille, B. (2001) Ionic Channels of Excitable Membranes, Sinauer, Sunderland, MA
93 Souslova, V., Cesare, P., Ding, Y., Akopian, A. N., Stanfa, L., et al. (2000) Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature 407, 1015-1017   DOI   ScienceOn
94 Gee, N. S., Brown, J. P., Dissanayake, V. U., Offord, J., Thurlow, R., et al. (1996) The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J. Biol. Chem. 271, 5768-5776   DOI
95 Iwata, Y., Katanosaka, Y., Arai, Y., Komamura, K., Miyatake, K., et al. (2003) A novel mechanism of myocyte degeneration involving the $Ca^{2+}$-permeable growth factor-regulated channel. J. Cell Biol. 161, 957-967   DOI   ScienceOn
96 Jaquemar, D., Schenker, T., and Trueb, B. (1999) An ankyrinlike protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. J. Biol. Chem. 274, 7325-7333   DOI   ScienceOn
97 Thut, P. D., Wrigley, D., and Gold, M. S. (2003) Cold transduction in rat trigeminal ganglia neurons in vitro. Neuroscience 119, 1071-1083   DOI   ScienceOn
98 Gruner, W. and Silva, L. R. (1994) Omega-conotoxin sensitivity and presynaptic inhibition of glutamatergic sensory neurotransmission in vitro. J. Neurosci. 14, 2800-2808
99 Todorovic, S. M., Pathirathna, S., Meyenburg, A., and Jevtovic- Todorovic, V. (2004) Mechanical and thermal anti-nociception in rats after systemic administration of verapamil. Neurosci. Lett. 360, 57-60   DOI   ScienceOn
100 Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C., and Lazdunski, M. (1997) A proton-gated cation channel involved in acid-sensing. Nature 386, 173-177   DOI   ScienceOn
101 Hofmann, F., Lacinova, L., and Klugbauer, N. (1999) Voltagedependent calcium channels: from structure to function. Rev. Physiol. Biochem. Pharmacol. 139, 33-87   DOI
102 Kashiba, H., Uchida, Y., Takeda, D., Nishigori, A., Ueda, Y., et al. (2004) TRPV2-immunoreactive intrinsic neurons in the rat intestine. Neurosci. Lett. 366, 193-196   DOI   ScienceOn
103 Rane, S. G., Holz, G. G. 4th, and Dunlap, K. (1987) Dihydropyridine inhibition of neuronal calcium current and substance P release. Pflugers Arch. 409, 361-366   DOI
104 Zygmunt, P. M., Petersson, J., Andersson, D. A., Chuang, H., Sorgard, M., et al. (1999) Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452-457   DOI   ScienceOn
105 North, R. A. (1996) Families of ion channels with two hydrophobic segments. Curr. Opin. Cell Biol. 8, 474-483   DOI   ScienceOn
106 Ferreira, J., da Silva, G. L., and Calixto, J. B. (2004) Contribution of vanilloid receptors to the overt nociception induced by B2 kinin receptor activation in mice. Br. J. Pharmacol. 141, 787-794   DOI   ScienceOn
107 Gold, M. S., Shuster, M. J., and Levine, J. D. (1996) Characterization of six voltage-gated $K^+$ currents in adult rat sensory neurons. J. Neurophysiol. 75, 2629-2646
108 McKemy, D. D., Neuhausser, W. M., and Julius, D. (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52-58   DOI   ScienceOn
109 Weizman, R., Getslev, V., Pankova, I. A., Schrieber, S., and Pick, C. G. (1999) Pharmacological interaction of the calcium channel blockers verapamil and flunarizine with the opioid system. Brain Res. 818, 187-195   DOI   ScienceOn
110 Dib-Hajj, S. D., Tyrrell, L., Cummins, T. R., Black, J. A., Wood, P. M., et al. (1999) Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett. 462, 117-120   DOI   ScienceOn
111 Okazawa, M., Takao, K., Hori, A., Shiraki, T., Matsumura, K., et al. (2002) Ionic basis of cold receptors acting as thermostats. J. Neurosci. 22, 3994
112 Toth, A., Kedei, N., Wang, Y., and Blumberg, P. M. (2003) Arachidonyl dopamine as a ligand for the vanilloid receptor VR1 of the rat. Life Sci. 73, 487-498   DOI   ScienceOn
113 Meuser, T., Pietruck, C., Gabriel, A., Xie, G. X., Lim, K. J., et al. (2002) 5-HT7 receptors are involved in mediating 5-HTinduced activation of rat primary afferent neurons. Life Sci. 71, 2279-2289   DOI   ScienceOn
114 Bleehen, T., Hobbiger, F., and Keele, C. A. (1976) Identification of algogenic substances in human erythrocytes. J. Physiol. 262, 131-149
115 Chung, M. K., Lee, H., Mizuno, A., Suzuki, M., and Caterina, M. (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J. Biol. Chem. 279, 21569-21575   DOI   ScienceOn
116 Holzer, P. (1991) Capsaicin: cellular targets, mechanisms of action, and selectivity for thin sensory neurons. Pharmacol. Rev. 43, 143-201
117 Watanabe, H., Davis, J. B., Smart, D., Jerman, J. C., Smith, G. D., et al. (2002) Activation of TRPV4 channels (hVRL- 2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277, 13569-13577   DOI   ScienceOn
118 Cummins, T. R. and Waxman, S. G. (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J. Neurosci. 17, 3503-3514
119 Ma, Q. P. (2001) Vanilloid receptor homologue, VRL1, is expressed by both A- and C-fiber sensory neurons. Neuroreport 12, 3693-3695   DOI   ScienceOn
120 Maggi, C. A., Giuliani, S., Santicioli, P., Tramontana, M., and Meli, A. (1990) Effect of omega conotoxin on reflex responses mediated by activation of capsaicin-sensitive nerves of the rat urinary bladder and peptide release from the rat spinal cord. Neuroscience 34, 243-250   DOI   ScienceOn