• 제목/요약/키워드: critical buckling load

검색결과 356건 처리시간 0.034초

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets

  • Mehdi, Mohammadimehr
    • Advances in materials Research
    • /
    • 제11권4호
    • /
    • pp.279-298
    • /
    • 2022
  • In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.

Optimal flammability and thermal buckling resistance of eco-friendly abaca fiber/ polypropylene/egg shell powder/halloysite nanotubes composites

  • Saeed Kamarian;Reza Barbaz-Isfahani;Thanh Mai Nguyen Tran;Jung-Il Song
    • Advances in nano research
    • /
    • 제16권2호
    • /
    • pp.127-140
    • /
    • 2024
  • Upon direct/indirect exposure to flame or heat, composite structures may burn or thermally buckle. This issue becomes more important in the natural fiber-based composite structures with higher flammability and lower mechanical properties. The main goal of the present study was to obtain an optimal eco-friendly composite system with low flammability and high thermal buckling resistance. The studied composite consisted of polypropylene (PP) and short abaca fiber (AF) with eggshell powder (ESP) and halloysite clay nanotubes (HNTs) additives. An optimal base composite, consisting of 30 wt.% AF and 70 wt.% PP, abbreviated as OAP, was initially introduced based on burning rate (BR) and the Young's modulus determined by horizontal burning test (HBT) and tensile test, respectively. The effects of adding ESP to the base composite were then investigated with the same experimental tests. The results indicated that though the BR significantly decreased with the increase of ESP content up to 6 wt.%, it had a very destructive influence on the stiffness of the composite. To compensate for the damaging effect of ESP, small amount of HNT was used. The performance of OAP composite with 6 wt.% ESP and 3 wt.% HNT (OAPEH) was explored by conducting HBT, cone calorimeter test (CCT) and tensile test. The experimental results indicated a 9~23 % reduction in almost all flammability parameters such as heat release rate (HRR), total heat released (THR), maximum average rate of heat emission (MARHE), total smoke released (TSR), total smoke production (TSP), and mass loss (ML) during combustion. Furthermore, the combination of 6 wt.% ESP and 3 wt.% HNT reduced the stiffness of OAP to an insignificant amount by maximum 3%. Moreover, the char residue analysis revealed the distinct differences in the formation of char between AF/PP and AF/PP/ESP/HNT composites. Afterward, dilatometry test was carried out to examine the coefficient of thermal expansion (CTE) of OAP and OAPEH samples. The obtained results showed that the CTE of OAPEH composite was about 18% less than that of OAP. Finally, a theoretical model was used based on first-order shear deformation theory (FSDT) to predict the critical bucking temperatures of the OAP and OAPEH composite plates. It was shown that in the absence of mechanical load, the critical buckling temperatures of OAPEH composite plates were higher than those of OAP composites, such that the difference between the buckling temperatures increased with the increase of thickness. On the contrary, the positive effect of CTE reduction on the buckling temperature decreased by raising the axial compressive mechanical load on the composite plates which can be assigned to the reduction of stiffness after the incorporation of ESP. The results of present study generally stated that a suitable combination of AF, PP, ESP, and HNT can result in a relatively optimal and environmentally friendly composite with proper flame and thermal buckling resistance with no significant decline in the stiffness.

탄성 구조물의 안정성을 고려한 형상최적설계 (A Study on Shape Optimum Design for Stability of Elastic Structures)

  • 양욱진;최주호
    • 한국전산구조공학회논문집
    • /
    • 제20권1호
    • /
    • pp.75-82
    • /
    • 2007
  • 본 연구에서는 설계민감도 해석기법을 사용하여 구조물의 안정성, 즉 좌굴을 고려한 형상 최적설계를 수행하였다. 형상 변수를 고려한 설계민감도 해석을 수행하기 위해 전미분 개념을 도입하고, 이를 이용하여 연속체기반의 변분방정식을 미분하여 민감도공식을 유도하였다. 기존의 유한차분법과 비교할 때 설계민감도 해석법의 장점은 설계변수의 갯수에 상관없이 매우 적은 해석횟수를 가지고도 민감도를 더 정확하게 계산할 수 있으며, 해석결과만을 이용하여 민감도계산을 수행하므로 상용 해석 소프트웨어를 활용할 수 있다는 것이다. 한편 좌굴문제를 다룰 때는 일반적으로 보나 쉘 같은 구조요소를 이용하지만 본 연구에서는 솔리드 요소를 이용한 연속체 모델로 고려하였는데 그 이유는 연속체 모델을 이용하면 뚱뚱한 형상뿐만 아니라 보나 쉘 같은 슬림(slim) 한 모델을 모두 해석할 수 있기 때문이다 설계민감도를 활용하여 여러 가지 좌굴문제에 대해 형상 설계민감도 계산 및 최적설계를 수행하였다. 그 결과 실행함수가 매우 빠르게 수렴하는 것을 확인할 수 있었고, 설계변수가 많아지고 해석시간이 길어질수록 더 효율적인 것을 알 수 있었다.

Mechanical buckling analysis of hybrid laminated composite plates under different boundary conditions

  • Belkacem, Adim;Tahar, Hassaine Daouadji;Abderrezak, Rabahi;Amine, Benhenni Mohamed;Mohamed, Zidour;Boussad, Abbes
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.761-769
    • /
    • 2018
  • In this paper, we study the Carbon/Glass hybrid laminated composite plates, where the buckling behavior is examined using an accurate and simple refined higher order shear deformation theory. This theory takes account the shear effect, where shear deformation and shear stresses will be considered in determination of critical buckling load under different boundary conditions. The most interesting feature of this new kind of hybrid laminated composite plates is that the possibility of varying components percentages, which allows us for a variety of plates with different materials combinations in order to overcome the most difficult obstacles faced in traditional laminated composite plates like (cost and strength). Numerical results of the present study are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories issue from the literature. It can be concluded that the proposed theory is accurate and simple in solving the buckling behavior of hybrid laminated composite plates and allows to industrials the possibility to adjust the component of this new kind of plates in the most efficient way (reducing time and cost) according to their specific needs.

장대레일 궤도의 온도좌굴 거동에 미치는 열차하중의 영향 (Effects of Vehicle Loads on Thermal Buckling Behavior of Continuous Welded Rail Tracks)

  • 최동호;김호배
    • 한국강구조학회 논문집
    • /
    • 제12권6호
    • /
    • pp.727-736
    • /
    • 2000
  • 본 연구에서는 궤도의 좌굴해석 및 그 결과를 통해 열차하중이 직선 및 곡선 장대레일 궤도의 온도좌굴 거동에 미치는 영향에 대해 평가하였다. 차량을 고려한 온도좌굴 해석은 바퀴하중하에서 장대레일 궤도의 수직 처짐에 기인한 상향처짐을 결정하기 위해 유사정적 하중모델을 가정하였으며, 차량의 무게와 속도, 궤도의 곡률, 캔트, 그외의 열차와 궤도의 동적인 상호작용으로 인한 횡방향하중은 열차의 수직하중에 대한 수평하중 비에 포함하여 수행하였다. 수치적 해석을 통해 장대레일의 상부 및 하부좌굴온도를 구하였고, 이런 해석결과들을 기존의 열차하중을 포함하지 않은 정적 좌굴해석결과들과 비교하였다.

  • PDF

Free vibration and buckling analysis of elastically restrained FG-CNTRC sandwich annular nanoplates

  • Kolahdouzan, Farzad;Mosayyebi, Mohammad;Ghasemi, Faramarz Ashenai;Kolahchi, Reza;Panah, Seyed Rouhollah Mousavi
    • Advances in nano research
    • /
    • 제9권4호
    • /
    • pp.237-250
    • /
    • 2020
  • An accurate plate theory for assessing sandwich structures is of interest in order to provide precise results. Hence, this paper develops Layer-Wise (LW) theory for reaching precise results in terms of buckling and vibration behavior of Functionally Graded Carbon Nanotube-Reinforced Composite (FG-CNTRC) annular nanoplates. Furthermore, for simulating the structure much more realistic, its edges are elastically restrained against in-plane and transverse displacement. The nano structure is integrated with piezoelectric layers. Four distributions of Single-Walled Carbon Nanotubes (SWCNTs) along the thickness direction of the core layer are investigated. The Differential Quadrature Method (DQM) is utilized to solve the motion equations of nano structure subjected to the electric field. The influence of various parameters is depicted on both critical buckling load and frequency of the structure. The accuracy of solution procedure is demonstrated by comparing results with classical edge conditions. The results ascertain that the effects of different distributions of CNTs and their volume fraction are significant on the behavior of the system. Furthermore, the amount of in-plane and transverse spring coefficients plays an important role in the buckling and vibration behavior of the nano-structure and optimization of nano-structure design.

핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성 (Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test)

  • 강영환;김봉구;류정수;김영진;최명환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.125-130
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element(FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequency of the capsule in the x and z direction is 8.5Hz and 8.75Hz in air, and 7.5Hz and 7.75Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0m/s$^2$ that is within the allowable vibrational limit(18.99m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233N.

  • PDF

Nonlinear buckling and free vibration of curved CNTs by doublet mechanics

  • Eltaher, Mohamed A.;Mohamed, Nazira;Mohamed, Salwa A.
    • Smart Structures and Systems
    • /
    • 제26권2호
    • /
    • pp.213-226
    • /
    • 2020
  • In this manuscript, static and dynamic behaviors of geometrically imperfect carbon nanotubes (CNTs) subject to different types of end conditions are investigated. The Doublet Mechanics (DM) theory, which is length scale dependent theory, is used in the analysis. The Euler-Bernoulli kinematic and nonlinear mid-plane stretching effect are considered through analysis. The governing equation of imperfect CNTs is a sixth order nonlinear integro-partial-differential equation. The buckling problem is discretized via the differential-integral-quadrature method (DIQM) and then it is solved using Newton's method. The equation of linear vibration problem is discretized using DIQM and then solved as a linear eigenvalue problem to get natural frequencies and corresponding mode shapes. The DIQM results are compared with analytical ones available in the literature and excellent agreement is obtained. The numerical results are depicted to illustrate the influence of length scale parameter, imperfection amplitude and shear foundation constant on critical buckling load, post-buckling configuration and linear vibration behavior. The current model is effective in designing of NEMS, nano-sensor and nano-actuator manufactured by CNTs.

핵연료 조사시험용 캡슐 구조물의 좌굴 및 진동특성 (Buckling and Vibration Characteristics of the Capsule for Nuclear Fuel Irradiation Test)

  • 강영환;김봉구;류정수;김영진;최명환
    • 한국소음진동공학회논문집
    • /
    • 제14권8호
    • /
    • pp.741-748
    • /
    • 2004
  • The vibration and buckling characteristics of the capsule for fuel irradiation test are studied. The natural frequencies of the capsule in air and under water are obtained by modal testing and finite element (FE) analysis using ANSYS program, and accelerations with flow are measured to estimate the compatibility with the operation requirement of the HANARO reactor. The experimental fundamental frequencies of the capsule in the x and z direction are 8.5 Hz and 8.75 Hz in air, and 7.5 Hz and 7.75 Hz under water, respectively. The maximum amplitude of accelerations under the normal operating condition is measured as 11.0 m/s$^2$ that is within the allowable vibrational limit(18.99 m/s$^2$) of the reactor structure. Also, the maximum displacement at 100% flow is calculated as 0.13 mm which is not interference with other nearby structures. FE analysis results show that the natural frequencies are found to be similar to those of the modal testing when three supporting parts are considered as simply supported conditions. From the buckling analysis, when the loading tool is applied, the critical buckling load of the capsule is 233 N.