Browse > Article
http://dx.doi.org/10.12989/amr.2022.11.4.279

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain elasticity theory with porous core and functionally graded facesheets  

Mehdi, Mohammadimehr (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
Publication Information
Advances in materials Research / v.11, no.4, 2022 , pp. 279-298 More about this Journal
Abstract
In this paper, the important novelty and the defining a physical phenomenon of the resent research is the development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials in the top and bottom face sheets.Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case.
Keywords
a nonlocal stress-strain elasticity theory; bending and buckling analysis; functionally graded facesheets; porous core; sandwich beam;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Wang, K.F. and Wang, B.L. (2011), "Vibration of nanoscale plates with surface energy via nonlocal elasticity", Phys. E: Low-dimens. Syst. Nanostruct., 44(2), 448-453. https://doi.org/10.1016/j.physe.2011.09.019.   DOI
2 Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
3 Yang, J., Jia, X.L. and Kitipornchai, S. (2008), "Pull-in instability of nano-switches using nonlocal elasticity theory", J. Phys. D: Appl. Phys., 41, 035103. https://doi.org/10.1088/0022-3727/41/3/035103.   DOI
4 Yazdani, R., Mohammadimehr, M. and Navi, B.R. (2019), "Free vibration of Cooper-Naghdi micro saturated porous sandwich cylindrical shells with reinforced CNT face sheets under magneto-hydro-thermomechanical loadings", Struct. Eng. Mech., Int. J., 70(3), 351-365. https://doi.org/10.12989/sem.2019.70.3.351.   DOI
5 Yazdani, R. and Mohammadimehr, M. (2019), "Double bonded Cooper-Naghdi micro sandwich cylindrical shells with porous core and CNTRC face sheets: Wave propagation solution", Comput. Concrete, Int. J., 24(6), 499-511. https://doi.org/10.12989/cac.2019.24.6.499.   DOI
6 Zenkour, A.M. and Sobhy, M. (2013), "Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substate medium", Phys. E: Low-dimens. Syst. Nanostruct., 53, 251-259. https://doi.org/10.1016/j.physe.2013.04.022.   DOI
7 Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070.   DOI
8 Alavi, S.H. and Eipakchi, H. (2019), "Geometry and load effects on transient response of a VFGM annular plate: An analytical approach", Struct. Eng. Mech., Int. J., 70(2), 179-197. https://doi.org/10.12989/sem.2019.70.2.179.   DOI
9 Altekin, M. (2020), "Combined effects of material properties and boundary conditions on the large deflection bending analysis of circular plates on a nonlinear elastic foundation", Comput. Concrete, Int. J., 25(6), 537-549. https://doi.org/10.12989/cac.2020.25.6.537.   DOI
10 Anh, V.T.T., Bich, D.H. and Duc, N.D. (2015), "Nonlinear buckling analysis of thin FGM annular spherical shells on elastic foundations under external pressure and thermal loads", Eur. J. Mech. - A/Solids, 50, 28-38. https://doi.org/10.1016/j.euromechsol.2014.10.004.   DOI
11 Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035.   DOI
12 Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641.   DOI
13 Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko micro beams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048.   DOI
14 Babaei, H. and Eslami, M.R. (2019), "Thermally induced large deflection of FGM shallow micro-arches with integrated surface piezoelectric layers based on modified couple stress theory", Acta Mechanica, 230, 2363-2384. https://doi.org/10.1007/s00707-019-02384-0.   DOI
15 Bendenia, N., Zidour, M., Bousahla, A.N., Bourada, F., Tounsi, A., Benrahou, K.H., Bedia, E.A.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation", Comput. Concrete, Int. J., 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.   DOI
16 Canbay, C.A., Karaduman, O., Ibrahim, P.A. and Ozkul, I. (2021), "Thermostructural shape memory effect observations of ductile Cu-Al-Mn smart alloy", Adv. Mater. Res., Int. J., 10(1), 45-56. https://doi.org/10.12989/amr.2021.10.1.045.   DOI
17 Chen, D., Kitipornchai, S. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
18 Duc, N.D. (2013), "Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation", Compos. Struct., 102, 306-314. https://doi.org/10.1016/j.compstruct.2012.11.017.   DOI
19 Cong, P.H., Chien, T.M., Khoa, N.D. and Duc, N.D. (2018), "Nonlinear thermo-mechanical buckling and post-buckling response of porous FGM plates using Reddy's HSDT", J. Aerosp. Sci. Technol., 77, 419-428. https://doi.org/10.1016/j.ast.2018.03.020.   DOI
20 Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A., Tounsi, A. and Merzouki, T. (2020), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concrete, Int. J., 26(2), 137-150. https://doi.org/10.12989/cac.2020.26.2.137.   DOI
21 Duc, N.D. (2014), Nonlinear Static and Dynamic Stability of Functionally Graded Plates and Shells, Vietnam National University Press, Hanoi, Vietnam.
22 Duc, N.D. (2016a), "Nonlinear thermal dynamic analysis of eccentrically stiffened S-FGM circular cylindrical shells surrounded on elastic foundations using the Reddy's third-order shear deformation shell theory", Eur. J. Mech. - A/Solids, 58, 10-30. https://doi.org/10.1016/j.euromechsol.2016.01.004.   DOI
23 Duc, N.D. (2016b), "Nonlinear thermo-electro-mechanical dynamic response of shear deformable piezoelectric Sigmoid functionally graded sandwich circular cylindrical shells on elastic foundations", J. Sandw. Struct. Mater., 20(3), 351-378. https://doi.org/10.1177/1099636216653266.   DOI
24 Duc, N.D. and Quan, T.Q. (2015), "Nonlinear dynamic analysis of imperfect FGM double curved thin shallow shells with temperature-dependent properties on elastic foundation", J. Vib. Control, 21(7), 1340-1362. https://doi.org/10.1177/1077546313494114.   DOI
25 Duc, N.D., Tuan, N.D., Tran, P. and Quan, T.Q. (2017b), "Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads", Mech. Adv. Mater. Struct., 24(4), 318-329. https://doi.org/10.1080/15376494.2016.1142024.   DOI
26 Duc, N.D., Cong, P.H., Anh, V.M., Quang, V.D., Tran, P., Tuan, N.D. and Thinh, N.H. (2015), "Mechanical and thermal stability of eccentrically stiffened functionally graded conical shell panels resting on elastic foundations and in thermal environment", Compos. Struct., 132, 597-609. https://doi.org/10.1016/j.compstruct.2015.05.072.   DOI
27 Duc, N.D., Bich, D.H. and Cong, P.H. (2016c), "Nonlinear thermal dynamic response of shear deformable FGM plates on elastic foundations", J. Thermal Stresses, 39(3), 278-297. https://doi.org/10.1080/01495739.2015.1125194.   DOI
28 Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017a), "Nonlinear dynamic analysis and vibration of eccentrically stiffened S-FGM elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin-Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013.   DOI
29 Duc, N.D., Tuan, N.D., Tran, P. and Quan, T.Q. (2017c), "Nonlinear dynamic response and vibration of imperfect shear deformable functionally graded plates subjected to blast and thermal loads", Mech. Adv. Mater. Struct., 24(4), 318-329. https://doi.org/10.1080/15376494.2016.1142024.   DOI
30 Duc, N.D., Quang, V.D., Nguyen, P.D. and Chien, T.M. (2018a), "Nonlinear dynamic response of FGM porous plates on elastic foundation subjected to thermal and mechanical loads using the first order shear deformation theory", J. Appl. Computat. Mech., 4(4), 245-259. https://doi.org/10.22055/jacm.2018.23219.1151.   DOI
31 Eltaher, M.A., Khater, M.E. and Emam, S.A. (2016), "A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams", Appl. Mathe. Modell., 40(5-6), 4109-4128. https://doi.org/10.1016/j.apm.2015.11.026.   DOI
32 Duc, N.D., Seung-Eock, K. and Chan, D.Q. (2018b), "Thermal buckling analysis of FGM sandwich truncated conical shells reinforced by FGM stiffeners resting on elastic foundations using FSDT", J. Thermal Stresses, 41(3), 331-365. https://doi.org/10.1080/01495739.2017.1398623.   DOI
33 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008.   DOI
34 Ebrahimi, F., Seyfi, A. and Tornabene, F. (2019), "Wave dispersion characteristics of porous graphene platelet-reinforced composite shells", Struct. Eng. Mech., Int. J., 71(1), 99-107. https://doi.org/10.12989/sem.2019.71.1.099.   DOI
35 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
36 Eringen, A.C. (1983), "On direrential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
37 Gao, X.-L. (2015), "A new Timoshenko beam model incorporating microstructure and surface energy effects", Acta Mechanica, 226, 457-474. https://doi.org/10.1007/s00707-014-1189-y.   DOI
38 Ghayesh, M.H., Farajpour, A. and Farokhi, H. (2020), "Effect of flow pulsations on chaos in nanotubes using nonlocal strain gradient theory", Commun. Nonlinear Sci. Numer. Simul., 83, 105090. https://doi.org/10.1016/j.cnsns.2019.105090.   DOI
39 Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua, 59(2), 433-456. https://doi.org/ 10.32604/cmc.2019.06660.   DOI
40 Ghorbanpour, A.A., Shokravi, M., Mohammadimehr, M. (2009), "Buckling analysis of a double-walled carbon nanotube embedded in an elastic medium using the energy method", J. Solid Mech., 1(4), 289-299.
41 Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., Int. J., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063.   DOI
42 Jomehzadeh, E., Noori, H.R. and Saidi, A.R. (2011), "The size-dependent vibration analysis of micro-plates based on a modified couple stress theory", Physica E: Low-dimens. Syst. Nanostruct., 43(4), 877-883. https://doi.org/10.1016/j.physe.2010.11.005.   DOI
43 Karami, B. and Shahsavari, D. (2020), "On the forced resonant vibration analysis of functionally graded polymer composite doubly-curved nanoshells reinforced with graphene-nanoplatelets", Comput. Methods Appl. Mech. Eng., 359, 112767. https://doi.org/10.1016/j.cma.2019.112767.   DOI
44 Lam, D., Yang, F., Chong, A., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X.   DOI
45 Li, Q., Wu, D., Gao, W. Tin-Loi, F. (2020), "Size-dependent instability of organic solar cell resting on Winkler-Pasternak elastic foundation based on the modified strain gradient theory", Int. J. Mech. Sci., 177, 105306. https://doi.org/10.1016/j.ijmecsci.2019.105306.   DOI
46 Mohammadimehr, M., Saidi, A.R., Ghorbanpour Arani, A., Arefmanesh, A. and Han, Q. (2010), "Torsional buckling of a DWCNT embedded on winkler and pasternak foundations using nonlocal theory", J. Mech. Sci. Technol., 24(6), 1289-1299. https://doi.org/10.1007/s12206-010-0331-6.   DOI
47 Ma, H.M., Gao, X.-L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.   DOI
48 Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Mathe. Mech. Solids, 27(1), 66-92. https://doi.org/10.1177/10812865211011759.   DOI
49 Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., Int. J., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.   DOI
50 Mohammadimehr, M., Nejad, E.S. and Mehrabi, M. (2018), "Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores", Struct. Eng. Mech., Int. J., 65(4), 491-504. https://doi.org/10.12989/sem.2018.65.4.491.   DOI
51 Murmu, T. and Adhikari, S. (2010), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 08, 083514. https://doi.org/10.1063/1.3496627.   DOI
52 Namayandeh, M.J., Mohammadimehr, M., Mehrabi, M. and Sadeghzadeh-Attar, A. (2020), "Temperature and thermal stress distributions in a hollow circular cylinder composed of anisotropic and isotropic materials", Adv. Mater. Res., Int. J., 9(1), 15-32. https://doi.org/10.12989/amr.2020.9.1.015.   DOI
53 Nguyen, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2017b), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2019.01.011.   DOI
54 Narendar, S. (2011), "Buckling analysis of micro-/nano-scale plates based on two-variable refined plate theory incorporating nonlocal scale effects", Compos. Struct., 93(12), 3093-3103. https://doi.org/10.1016/j.compstruct.2011.06.028.   DOI
55 Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, Int. J., 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.   DOI
56 Nguyen, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017a), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. https://doi.org/10.1016/j.cma.2017.07.024.   DOI
57 Nguyen, L.B., Thai, C.H., Duong-Nguyen, N. and Nguyen-Xuan, H. (2021), "A size-dependent isogeometric approach for vibration analysis of FG piezoelectric porous microplates using modified strain gradient theory", Eng. Comput. https://link.springer.com/article/10.1007/s00366-021-01468-7.   DOI
58 Nguyen-Thanh, V.M., Zhuang, X. and Rabczuk, T. (2020), "A deep energy method for finite deformation hyperelasticity", Eur. J. Mech. - A/Solids, 80, 103874. https://doi.org/10.1016/j.euromechsol.2019.103874   DOI
59 Polizzotto, C. (2001), "Nonlocal elasticity and related variational principles", Int. J. Solids Struct., 38(42-43), 7359-7380. https://doi.org/10.1016/S0020-7683(01)00039-7.   DOI
60 Pradhan, S.C. (2009), "Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory", Phys. Lett. A, 373(45), 4182-4188. https://doi.org/10.1016/j.physleta.2009.09.021.   DOI
61 Rabia, B., Daouadji, T.H. and Abderezak, R. (2020), "Predictions of the maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis", Adv. Mater. Res., Int. J., 9(4), 265-287. https://doi.org/10.12989/amr.2020.9.4.265.   DOI
62 Ren, H., Zhuang, X. and Rabczuk, T. (2020a), "A higher order nonlocal operator method for solving partial differential equations", Comput. Methods Appl. Mech. Eng., 367, 113132. https://doi.org/10.1016/j.cma.2020.113132.   DOI
63 Rahi, M.J., Firoozjaee, A.R. and Dehestani, M. (2021), "Simplified numerical method for nonlocal static and dynamic analysis of a graphene nanoplate", Adv. Mater. Res., Int. J., 10(1), 1-22. https://doi.org/10.12989/amr.2021.10.1.001.   DOI
64 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004   DOI
65 Ren, H., Zhuang, X. and Rabczuk, T. (2020b), "A nonlocal operator method for solving partial differential equations", Comput. Methods Appl. Mech. Eng., 358, 112621. https://doi.org/10.1016/j.cma.2020.112621.   DOI
66 Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X. and Rabczuk, T. (2020), "An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications", Comput. Methods Appl. Mech. Eng., 362, 112790. https://doi.org/10.1016/j.cma.2019.112790.   DOI
67 Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005.   DOI
68 Shooshtari, A. and Razavi, S. (2015), "Nonlinear vibration analysis of rectangular magneto-electro-elastic thin plates", J. Eng., 28, 139-147. https://doi.org/10.5829/idosi.ije.2015.28.01a.18.   DOI
69 Thai, C.H., Ferreira, A.J.M. and Nguyen, H. (2018), "Isogeometric analysis of size-dependent isotropic and sandwich functionally graded microplates based on modified strain gradient elasticity theory", Compos. Struct., 192, 274-288. https://doi.org/10.1016/j.euromechsol.2018.07.012.   DOI