• 제목/요약/키워드: critical art

검색결과 293건 처리시간 0.023초

세기말에 나타난 역사주의(Historicism) 의상에 관한 연구 (A Study on the Historicism Fashion of Century-end)

  • Yoon-Jeong Park;Sook-Hi Yang
    • 복식문화연구
    • /
    • 제8권1호
    • /
    • pp.87-101
    • /
    • 2000
  • The purpose of study is explaining the Historicism as a result of compromise, historical eclecticism, between historical things and current cultural background instead of regarding it as an imitation from the past. It means that external factors in history help internal esthetic value surface out as costume. Fashion s history is more than the classified thing according to the appearance with the changes of the times. Intrinsic cultural elements should be added in creating new fashion. One of the different features between Modernism and Post-modernism. When coming to the period of Post-modernism, it connected with the historical factors to make something new by fragmenting, magnifying, or minimizing them. This is calles 'Historicism'in the world of art. It revived the past, not the past itself, in new ways : quotation, reuse, metaphor, and mixture. To represent the image, parody, pastiche, or bricolage was usually used. In post-modernism fashion, parody is a technique for imitating the past or the preceding forms with artists'own critical points of view. This technique gives us shock or surprise by using satirical, ironical or paradoxical expressions. pastiche shares the same part with parody in imitating particular or unique style, and it can be renamed empty parody, because it doesn't have any hidden motivation or satirical impulse. bricolage is a mixture of quotations from other works. It contains fragments that deepen the image. Like the techniques uttered above, the revival of history through parody, pastiche or bricolage is historical eclecticism and it is included in Historicism.

  • PDF

Development of field programmable gate array-based encryption module to mitigate man-in-the-middle attack for nuclear power plant data communication network

  • Elakrat, Mohamed Abdallah;Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.780-787
    • /
    • 2018
  • This article presents a security module based on a field programmable gate array (FPGA) to mitigate man-in-the-middle cyber attacks. Nowadays, the FPGA is considered to be the state of the art in nuclear power plants I&C systems due to its flexibility, reconfigurability, and maintainability of the FPGA technology; it also provides acceptable solutions for embedded computing applications that require cybersecurity. The proposed FPGA-based security module is developed to mitigate information-gathering attacks, which can be made by gaining physical access to the network, e.g., a man-in-the-middle attack, using a cryptographic process to ensure data confidentiality and integrity and prevent injecting malware or malicious data into the critical digital assets of a nuclear power plant data communication system. A model-based system engineering approach is applied. System requirements analysis and enhanced function flow block diagrams are created and simulated using CORE9 to compare the performance of the current and developed systems. Hardware description language code for encryption and serial communication is developed using Vivado Design Suite 2017.2 as a programming tool to run the system synthesis and implementation for performance simulation and design verification. Simple windows are developed using Java for physical testing and communication between a personal computer and the FPGA.

소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구 (A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool)

  • 이재하;박성령;양승한;이영문
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.

Surface erosion behavior of biopolymer-treated river sand

  • Kwon, Yeong-Man;Cho, Gye-Chun;Chung, Moon-Kyung;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.49-58
    • /
    • 2021
  • The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.

A review of the transmission tower-line system performance under typhoon in wind tunnel test

  • Li, Xianying;Yao, Yu;Wu, Hongtao;Zhao, Biao;Chen, Bin;Yi, Tao
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.87-98
    • /
    • 2019
  • As a regenerated turbulent wind field process, wind tunnel test has proven to be a promising approach for investigating the transmission tower-line system (TTLS) performance in view of experimental scaled models design, simulation techniques of wind field, and wind induced responses subjected to typhoon. However, the challenges still remain in using various wind tunnels to regenerate turbulent wind field with considerable progress having been made in recent years. This review paper provides an overview of the state-of-the-art of the wind tunnel based on active or passive controlled simulation techniques. Specific attention and critical assessment have been given to: (a) the design of experimental scaled models, (b) the simulation techniques of wind field, and (c) the responses of TTLS subjected to typhoon in wind tunnel. This review concludes with the research challenges and recommendations for future research direction.

Multi-unit risk assessment of nuclear power plants: Current status and issues

  • Yang, Joon-Eon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1199-1209
    • /
    • 2018
  • After the Fukushima-Daiichi accident in 2011, the multi-unit risk, i.e., the risk due to several nuclear power plants (NPPs) in a site has become an important issue in several countries such as Korea, Canada, and China. However, the multi-unit risk has been discussed for a long time in the nuclear community before the Fukushima-Daiichi nuclear accident occurred. The regulatory authorities around the world and the international organizations had proposed requirements or guidelines to reduce the multi-unit risk. The concerns regarding the multi-unit risk can be summarized in the following three questions: How much the accident of an NPP in a site affects the safety of other NPPs in the same site? What is the total risk of a site with many NPPs? Will the risk of the simultaneous accidents at several NPPs in a site such as the Fukushima Daiichi accident be low enough? The multi-unit risk assessment (MURA) in an integrated framework is a practical approach to obtain the answers for the above questions. Even though there were few studies to assess the multi-unit risk before the Fukushima-Daiichi nuclear accident, there are still several issues to be resolved to perform the complete MURA. This article aims to provide an overview of the multi-unit risk issues and its assessment. We discuss the several critical issues in the current MURA to get useful insights regarding the multi-unit risk with the current state art of probabilistic safety assessment (PSA) technologies. Also, the qualitative answers for the above questions are addressed.

Facile and Rapid Glycosylation Monitoring of Therapeutic Antibodies Through Intact Protein Analysis

  • Oh, Myung Jin;Seo, Nari;Seo, JungA;Kim, Ga Hyeon;An, Hyun Joo
    • Mass Spectrometry Letters
    • /
    • 제12권3호
    • /
    • pp.85-92
    • /
    • 2021
  • The therapeutic antibody drug market has experienced explosive growth as mAbs become the main therapeutic modality for a variety of diseases. Characterization of glycosylation that directly affects the efficacy and safety of therapeutic monoclonal antibodies (mAbs) is critical for therapeutics development, bioprocess system optimization, lot release, and comparability evaluation. The LC/MS approach has been widely used to structurally characterize mAbs, and recently attempts have been made to obtain comprehensive information on the primary structure and post-translational modifications (PTMs) of mAbs through intact protein analysis. In this study, we performed state-of-the-art LC/MS based intact protein analysis to readily identify and characterize glycoforms of various mAbs. Different glycoforms of mAbs produced in different expression cell lines including CHO, SP2/0 and HEK cells were monitored and compared. In addition, the comparability of protein molecular weight, glycoform pattern, and relative abundances of glycoforms between the commercialized trastuzumab biosimilar and the original product was determined in detail using the given platform. Intact mAb analysis allowed us to gain insight into the overall mAb structure, including the complexity and diversity of glycosylation. Furthermore, our analytical platform with high reproducibility is expected to be widely used for biopharmaceutical characterization required at all stages of drug development and manufacturing.

Detecting Malware in Cyberphysical Systems Using Machine Learning: a Survey

  • Montes, F.;Bermejo, J.;Sanchez, L.E.;Bermejo, J.R.;Sicilia, J.A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.1119-1139
    • /
    • 2021
  • Among the scientific literature, it has not been possible to find a consensus on the definition of the limits or properties that allow differentiating or grouping the cyber-physical systems (CPS) and the Internet of Things (IoT). Despite this controversy the papers reviewed agree that both have become crucial elements not only for industry but also for society in general. The impact of a malware attack affecting one of these systems may suppose a risk for the industrial processes involved and perhaps also for society in general if the system affected is a critical infrastructure. This article reviews the state of the art of the application of machine learning in the automation of malware detection in cyberphysical systems, evaluating the most representative articles in this field and summarizing the results obtained, the most common malware attacks in this type of systems, the most promising algorithms for malware detection in cyberphysical systems and the future lines of research in this field with the greatest potential for the coming years.

Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.575-591
    • /
    • 2020
  • Wind load is typically considered as one of the governing design loads acting on a structure. Understanding its nature is essential in evaluation of its action on the structure. Many codes and standards are founded on state of the art knowledge and include step by step procedures to calculate wind loads for various types of structures. One of the most accepted means for calculating wind load is using Gust Load Factor or base bending Moment Gust Load Factor (MGLF), where codes are adjusted based on local data available. Although local data may differ, the general procedure is the same. In this paper, ASCE 7-16 (2017), which is used as the main reference in the U.S., and Korean Building Code (KBC 2016) are compared in evaluation of wind loads. The primary purpose of this paper is to provide insight on each code from a structural engineering perspective. Herein, discussion focuses on where the two codes are compatible and differ. In evaluating the action of wind loads on a building, knowledge of the dynamic properties of the structure is critical. For this study, the design of four figurative high-rise buildings with dual systems was analyzed.

A Computerized Doughty Predictor Framework for Corona Virus Disease: Combined Deep Learning based Approach

  • P, Ramya;Babu S, Venkatesh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.2018-2043
    • /
    • 2022
  • Nowadays, COVID-19 infections are influencing our daily lives which have spread globally. The major symptoms' of COVID-19 are dry cough, sore throat, and fever which in turn to critical complications like multi organs failure, acute respiratory distress syndrome, etc. Therefore, to hinder the spread of COVID-19, a Computerized Doughty Predictor Framework (CDPF) is developed to yield benefits in monitoring the progression of disease from Chest CT images which will reduce the mortality rates significantly. The proposed framework CDPF employs Convolutional Neural Network (CNN) as a feature extractor to extract the features from CT images. Subsequently, the extracted features are fed into the Adaptive Dragonfly Algorithm (ADA) to extract the most significant features which will smoothly drive the diagnosing of the COVID and Non-COVID cases with the support of Doughty Learners (DL). This paper uses the publicly available SARS-CoV-2 and Github COVID CT dataset which contains 2482 and 812 CT images with two class labels COVID+ and COVI-. The performance of CDPF is evaluated against existing state of art approaches, which shows the superiority of CDPF with the diagnosis accuracy of about 99.76%.