Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.1.049

Surface erosion behavior of biopolymer-treated river sand  

Kwon, Yeong-Man (Department of Civil and Environmental Engineering, KAIST)
Cho, Gye-Chun (Department of Civil and Environmental Engineering, KAIST)
Chung, Moon-Kyung (Korea Institute of Civil Engineering and Building Technology)
Chang, Ilhan (Department of Civil Systems Engineering, Ajou University)
Publication Information
Geomechanics and Engineering / v.25, no.1, 2021 , pp. 49-58 More about this Journal
Abstract
The resistance of soil to the tractive force of flowing water is one of the essential parameters for the stability of the soil when directly exposed to the movement of water such as in rivers and ocean beds. Biopolymers, which are new to sustainable geotechnical engineering practices, are known to enhance the mechanical properties of soil. This study addresses the surface erosion resistance of river-sand treated with several biopolymers that originated from micro-organisms, plants, and dairy products. We used a state-of-the-art erosion function apparatus with P-wave reflection monitoring. Experimental results have shown that biopolymers significantly improve the erosion resistance of soil surfaces. Specifically, the critical shear stress (i.e., the minimum shear stress needed to detach individual soil grains) of biopolymer-treated soils increased by 2 to 500 times. The erodibility coefficient (i.e., the rate of increase in erodibility as the shear stress increases) decreased following biopolymer treatment from 1 × 10-2 to 1 × 10-6 times compared to that of untreated river-sands. The scour prediction calculated using the SRICOS-EFA program has shown that a height of 14 m of an untreated surface is eroded during the ten years flow of the Nakdong River, while biopolymer treatment reduced this height to less than 2.5 m. The result of this study has demonstrated the possibility of cross-linked biopolymers for river-bed stabilization agents.
Keywords
river-bed terrain; surface erosion; EFA experiment; biopolymer; cross-linking;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Deng, L. and Cai, C.S. (2010), "Bridge scour: Prediction, modeling, monitoring, and countermeasures", Practice Period. Struct. Des. Construct., 15(2), 125-134. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000041.   DOI
2 Dey, S. and Raikar, R.V. (2007), "Clear-water scour at piers in sand beds with an armor layer of gravels", J. Hydraul. Eng., 133(6), 703-711. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(703).   DOI
3 El-Morsy, E.A., Malik, M. and Letey, J. (1991), "Polymer effects on the hydraulic conductivity of saline and sodic soil conditions", Soil Sci., 151(6), 430-435.   DOI
4 Fujino, Y., Sun, L., Pacheco, B.M. and Chaiseri, P. (1992), "Tuned liquid damper (TLD) for suppressing horizontal motion of structures", J. Eng. Mech., 118(10), 2017-2030. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017).   DOI
5 Ham, S.M., Chang, I., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900.   DOI
6 Ham, S., Kwon, T., Chang, I. and Chung, M. (2016), "Ultrasonic P-wave reflection monitoring of soil erosion for erosion function apparatus", Geotech. Test. J., 39(2), 301-314. https://doi.org/10.1520/GTJ20150040.   DOI
7 Hanson, G. and Cook, K. (1997), "Development of excess shear stress parameters for circular jet testing", ASAE Paper, 972227.
8 Heidarpour, M., Afzalimehr, H. and Izadinia, E. (2010), "Reduction of local scour around bridge pier groups using collars", Int. J. Sediment Res., 25(4), 411-422. https://doi.org/10.1016/S1001-6279(11)60008-5.   DOI
9 Martin, G., Yen, T. and Karimi, S. (1996), "Application of biopolymer technology in silty soil matrices to form impervious barriers", Proceedings of the 7th Australia New Zealand Conference on Geomechanics: Geomechanics in a Changing World, Adelaide, Australia, July.
10 Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F. and Nava-Saucedo, J.E. (2008), "Polymer biodegradation: Mechanisms and estimation techniques - A review", Chemosphere. 73(4), 429-442. https://doi.org/10.1016/j.chemosphere.2008.06.064.   DOI
11 Martin, O., Averous, L. and Della Valle, G. (2003), "In-line determination of plasticized wheat starch viscoelastic behavior: Impact of processing", Carbohyd. Polym., 53(2), 169-182. https://doi.org/10.1016/S0144-8617(03)00040-7.   DOI
12 Moody, L.F. (1944), "Friction factors for pipe flow", Trans. ASME, 66, 671-684.
13 National Institute of Enviromental Research (2020), Water Environment Information System.
14 Nugent, R.A., Zhang, G. and Gambrell, R.P. (2009), "Effect of exopolymers on the liquid limit of clays and its engineering implications", Transport. Res. Rec., 2101(1), 34-43. https://doi.org/10.3141/2101-05.   DOI
15 Briaud, J.L., Ting, F.C.K., Chen, H.C., Gudavalli, R., Perugu, S. and Wei, G. (1999), "SRICOS: Prediction of scour rate in cohesive soils at bridge piers", J. Geotech. Geoenviron. Eng., 125(4), 237-246. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:4(237).   DOI
16 Briaud, J.L. (2008), "Case histories in soil and rock erosion: Woodrow wilson bridge, brazos river meander, normandy cliffs, and new orleans levees", J. Geotech. Geoenviron. Eng., 134(10), 1425-1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425).   DOI
17 Briaud, J.L., Chen, H.C., Govindasamy, A.V. and Storesund, R. (2008), "Levee erosion by overtopping in new orleans during the Katrina hurricane", J. Geotech. Geoenviron. Eng., 134(5), 618-632. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:5(618).   DOI
18 Briaud, J.L., Ting, F., Chen, H., Gudavalli, R., Kwak, K., Philogene, B., Han, S.W., Perugu, S., Wei, G. and Nurtjahyo, P.J.T.T.I. (1999), SRICOS: Prediction of Scour Rate at Bridge Piers, Texas A&M University, C.S., Texas, U.S.A., 2937-293.
19 Briaud, J.L., Ting, F.C.K., Chen, H.C., Cao, Y., Han, S.W. and Kwak, K.W. (2001), "Erosion function apparatus for scour rate predictions", J. Geotech. Geoenviron. Eng., 127(2), 105-113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105).   DOI
20 Hemar, Y., Tamehana, M., Munro, P.A. and Singh, H. (2001), "Viscosity, microstructure and phase behavior of aqueous mixtures of commercial milk protein products and xanthan gum", Food Hydrocolloid., 15(4), 565-574. https://doi.org/10.1016/S0268-005X(01)00077-7.   DOI
21 Ji, U., Julien, P.Y. and Park, S.K. (2011), "Sediment flushing at the Nakdong River estuary barrage", J. Hydraul. Eng., 137(11), 1522-1535. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000395.   DOI
22 Jiugao, Y., Ning, W. and Xiaofei, M. (2005), "The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol", Starch Starke. 57(10), 494-504. https://doi.org/10.1002/star.200500423.   DOI
23 Khatami, H.R. and O'Kelly, B.C. (2012), "Improving mechanical properties of sand using biopolymers", J. Geotech. Geoenviron. Eng., 139(8), 1402-1406. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000861.   DOI
24 Kwon, Y.M., Chang, I., Lee, M. and Cho, G.C. (2019), "Geotechnical engineering behaviors of biopolymer-treated soft marine soil", Geomech. Eng., 17(5), 453-464. https://doi.org/10.12989/gae.2019.17.5.453.   DOI
25 Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1,3/1,6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633.   DOI
26 Chang, I. and Cho, G.C. (2019), "Shear strength behavior and parameters of microbial gellan gum-treated soils: From sand to clay", Acta Geotechnica, 14(2), 361-375. https://doi.org/10.1007/s11440-018-0641-x.   DOI
27 Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475.   DOI
28 Kim, C. and Yoo, B. (2006), "Rheological properties of rice starch-xanthan gum mixtures", J. Food Eng., 75(1), 120-128. https://doi.org/10.1016/j.jfoodeng.2005.04.002.   DOI
29 Kim, Y.M., Park, T. and Kwon, T.H. (2019), "Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation", Geomech. Eng., 17(5), 485-496. https://doi.org/10.12989/gae.2019.17.5.485.   DOI
30 Kwon, Y.M., Ham, S.M., Kwon, T.H., Cho, G.C. and Chang, I. (2020), "Surface-erosion behaviour of biopolymer-treated soils assessed by EFA", Geotechnique Lett., 10(2), 1-7. https://doi.org/10.1680/jgele.19.00106.   DOI
31 Renault, F., Sancey, B., Badot, P.M. and Crini, G. (2009), "Chitosan for coagulation/flocculation processes-An eco-friendly approach", Eur. Polym. J., 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj.2008.12.027.   DOI
32 Nugent, R.A., Zhang, G. and Gambrell, R.P. (2010), "The effects of exopolymers on the erosional resistance of cohesive sediments", Proceedings of the International Conference on Scour and Erosion (ICSE-5) 2010, San Francisco, California, U.S.A., November.
33 Zarrati, A.R., Nazariha, M. and Mashahir, M.B. (2006), "Reduction of local scour in the vicinity of bridge pier groups using collars and riprap", J. Hydraul. Eng., 132(2), 154-162. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:2(154).   DOI
34 Chang, I., Im, J., Lee, S.W. and Cho, G.C. (2017), "Strength durability of gellan gum biopolymer-treated Korean sand with cyclic wetting and drying", Constr. Build. Mater., 143, 210-221. https://doi.org/10.1016/j.conbuildmat.2017.02.061.   DOI
35 Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.   DOI
36 Chang, I., Kwon, Y.M., Im, J. and Cho, G.C. (2019), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can. Geotech. J., 56(8), 1206-1213. https://doi.org/10.1139/cgj-2018-0254.   DOI
37 Chang, I., Prasidhi, A.K., Im, J., Shin, H.-D. and Cho, G.-C. (2015), "Soil treatment using microbial biopolymers for antidesertification purposes", Geoderma. 253-254, 39-47. https://doi.org/10.1016/j.geoderma.2015.04.006.   DOI
38 Prendergast, L.J. and Gavin, K. (2014), "A review of bridge scour monitoring techniques", J. Rock Mech. Geotech. Eng., 6(2), 138-149. https://doi.org/10.1016/j.jrmge.2014.01.007.   DOI
39 Reddy, N., Reddy, R. and Jiang, Q. (2015), "Crosslinking biopolymers for biomedical applications", Trends Biotechnol., 33(6), 362-369. https://doi.org/10.1016/j.tibtech.2015.03.008.   DOI
40 Reddy, N. and Yang, Y. (2010), "Citric acid cross-linking of starch films", Food Chem., 118(3), 702-711. https://doi.org/10.1016/j.foodchem.2009.05.050.   DOI
41 Schulze, K., Hunger, M. and Doll, P. (2005), "Simulating river flow velocity on global scale", Adv. Geosci., 5, 133-136.   DOI
42 Temple, D.M. (1992), "Estimating flood damage to vegetated deep soil spillways", Appl. Eng. Agric., 8(2), 237-242. https://doi.org/10.13031/2013.26059.   DOI
43 Tingsanchali, T. and Chinnarasri, C. (2001), "Numerical modelling of dam failure due to flow overtopping", Hydrolog. Sci., 46(1), 113-130. https://doi.org/10.1080/02626660109492804.   DOI
44 Wiszniewski, M. and Cabalar, A.F. (2014), Hydraulic conductivity of a Biopolymer Treated Sand, in New Frontiers in Geotechnical Engineering, 19-27.
45 Biron, P.M., Robson, C., Lapointe, M.F. and Gaskin, S.J. (2004), "Comparing different methods of bed shear stress estimates in simple and complex flow fields", Earth Surf. Proc. Land., 29(11), 1403-1415. https://doi.org/10.1002/esp.1111.   DOI
46 ASTM (2010), D2216-10: Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
47 ASTM (2017), D6913/D6913M-17: Standard test methods for particle-size distribution (gradation) of soils using sieve analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
48 Bahar, R., Benazzoug, M. and Kenai, S. (2004), "Performance of compacted cement-stabilised soil", Cement Concrete Compos., 26(7), 811-820. https://doi.org/10.1016/j.cemconcomp.2004.01.003.   DOI
49 Bouazza, A., Gates, W. and Ranjith, P. (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59(1), 71-72. https://doi.org/10.1680/geot.2007.00137.   DOI
50 Chen, C., Wu, L., Perdjon, M., Huang, X. and Peng, Y. (2019), "The drying effect on xanthan gum biopolymer treated sandy soil shear strength", Constr. Build. Mater., 197, 271-279. https://doi.org/10.1016/j.conbuildmat.2018.11.120.   DOI
51 Cheng, L. and Cord-Ruwisch, R. (2012), "In situ soil cementation with ureolytic bacteria by surface percolation", Ecol. Eng., 42, 64-72. https://doi.org/10.1016/j.ecoleng.2012.01.013.   DOI
52 Christianson, D.D. (1981), "Gelatinization of wheat starch as modified by xanthan gum, guar gum, and cellulose gum", Cereal Chem., 58(6), 513-517.
53 Curvelo, A.A.S., de Carvalho, A.J.F. and Agnelli, J.A.M. (2001), "Thermoplastic starch-cellulosic fibers composites: Preliminary results", Carbohyd. Polym., 45(2), 183-188. https://doi.org/10.1016/S0144-8617(00)00314-3.   DOI
54 Lee, S., Im, J., Cho, G.C. and Chang, I. (2019), "Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands", Geomech. Eng., 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445.   DOI
55 Lauchlan, C.S. and Melville, B.W. (2001), "Riprap protection at bridge piers", J. Hydraul. Eng., 127(5), 412-418. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(412).   DOI
56 Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.   DOI