• 제목/요약/키워드: crevice corrosion

검색결과 78건 처리시간 0.032초

임플랜트 지대주와 주조 금합금과의 접합 및 부식에 관한 연구 (A STUDY OF INTERFACE AND CORROSION BEHAVIOR BETWEEN IMPLANT ABUTMENT AND CASTING GOLD ALLOY)

  • 손미경;마장선;정재헌
    • 대한치과보철학회지
    • /
    • 제37권5호
    • /
    • pp.672-686
    • /
    • 1999
  • The purpose of this study was to compare the casting problem and corrosion behavior in two types of HL Hexed abutments of the Steri-Oss system ; gold/plastic coping and gold coping. The anodic Polarization behavior, the galvanic corrosion between abutments and Type III gold alloys, before and after casting were analyzed, and the crevice corrosion of casting samples was analyzed with the CPPT test and the SEM. The results are as follows : 1. Anodic polarization behavior of samples ; Before casting, gold/plastic coping and gold coping was shown to have a similar corrosion pat-terns. Type III casting gold alloy was shown to have a lower corrosion potential and passivation film. Corrosion potential of the case of gold/plastic coping after casting was higher than that of gold coping, but the region of passivation film for gold/plastic coping was smaller than that of gold coping. 2. Galvanic corrosion behavior of samples ; Contact current density between casting gold alloys and gold/plastic before casting was higher than that between gold coping and casting gold alloy Galvanic corrosion of samples after casting was shown to have similar contact current density 3. Crevice corrosion behavior of samples ; Crevice corrosion resistance of casting sample using gold coping was lower than that of cast-ing sample using gold/plastic coping, and a severe corrosion pattern was observed at the abutment-casting gold alloy interface by the SEM.

  • PDF

임플랜트 고정체와 지대나사간의 부식특성에 관한 연구 (CORROSION CHARACTERISTICS BETWEEN IMPLANT FIXTURE AND ABUTMENT SCREW)

  • 기수진;권혁신;최한철
    • 대한치과보철학회지
    • /
    • 제38권1호
    • /
    • pp.85-97
    • /
    • 2000
  • The purpose of this study was to compare the corrosion characteristics between implant fixture and two types of abutment screw ; gold screw, titanium screw. The anodic polarization behavior, the galvanic corrosion behavior, and the crevice corrosion behavior of prepared samples were investigated using potentiostat and scanning electron microscope. The results were as follows: 1. Anodic polarization behavior of samples; The primary passivation potential of implant fixture was -420mV, implant abutment was -560mV. titanium screw was -370mV and gold screw was -230mV. All samples were shown to have a high corrosion potential and good formation of passive film. The critical passive current density of gold screw was higher than that of other samples and the sample of gold screw showed a unstable passive film formation at passive region. 2. Galvanic corrosion behavior of samples; Contact current density between implant fixture and titanium screw showed $8.023{\times}10^{-5}C/cm^2$. Contact current density between implant fixture and gold screw showed $5.142{\times}10^{-5}C/cm^2$. 3. Crevice corrosion behavior of samples; The crevice corrosion resistance of sample using titanium screw was higher than that of sample using gold screw, and a severe corrosion morphologies were observed at the fixture-screw interface by the scanning electron microscope.

  • PDF

Role of residual ferrites on crevice SCC of austenitic stainless steels in PWR water with high-dissolved oxygen

  • Sinjlawi, Abdullah;Chen, Junjie;Kim, Ho-Sub;Lee, Hyeon Bae;Jang, Changheui;Lee, Sanghoon
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2552-2564
    • /
    • 2020
  • The crevice stress corrosion cracking (SCC) susceptibility of austenitic stainless steels was evaluated in simulated pressurized water reactor (PWR) environments. To simulate the abnormal condition in temporary clamping devices on leaking small bore pipes, crevice bent beam (CBB) tests were performed in the oxygenated as well as hydrogenated conditions. No SCC cracks were found for SS316 in both conditions. SS304 also showed good resistance in the hydrogenated condition. However, all SS304 specimens showed SCC cracks in the oxygenated condition, indicating poor crevice SCC resistance. It was found that residual ferrites were selectively dissolved because of the galvanic corrosion coupled with the neigh-bouring austenite phase, resulting in SCC initiation in SS304. Crack morphologies were mostly transgranular assisted by the damaged δ-ferrite and deformation-induced slip bands.

덴팅거동에 미치는 고온틈새 환경변수들의 영향연구 (Study on the Effects of Environmental Parameters on High Temperature Denting Behavior in Crevices)

  • 김명진;김정수;김동진;김홍표
    • Corrosion Science and Technology
    • /
    • 제10권5호
    • /
    • pp.180-188
    • /
    • 2011
  • In the present study, denting corrosion experiments were performed as a function of crevice gap size (50, 100 and 200 ${\mu}m$) in a solution containing 3,500 ppm NaCl + 0.2 M $CuCl_2$ (pH = 3 adjusted by HCl). The effects of chloride ion concentrations (3, 3,500 and 35,000 ppm as NaCl) were also outlined with two different crevice gap sizes (100, 200 ${\mu}m$). In addition, the effect of NiB on the denting corrosion was also investigated in a solution of 35,000 ppm NaCl + 0.2 M $CuCl_2$ (pH = 3 adjusted by HCl). The results showed that denting rate increased with the increasing crevice gap size at an initial stage and became nearly constant afterwards. As the concentration of chloride ion increased, the denting rate also increased. However, the addition of a NiB powder of 4 g/L in to the acid-chloride solution was observed to suppress the denting rate significantly.

도장이 필요없는 내후성강 박스거더 상부 플랜지외부면 방식제 주입을 통한 방식공법 연구 (The study on the protection method from corrosion by the sealant injection on the unpainted weathering steel top flange outer surface of box girder)

  • 송창영
    • Corrosion Science and Technology
    • /
    • 제13권4호
    • /
    • pp.139-144
    • /
    • 2014
  • In corrosion-sensitive area of exsisting unpainted weathering steel bridge with closed box girder structure. there are some serious local corrosion problems because of rain water or dew water which can not be solved by conventional maintenance method. These problems must be technically controled because of the influence on the safety of bridge. This study is the first stage of developing the economic corrosion control manual for these local corrosion problems. Through the injecting experiment of tar sealant into the crevice of mock-up equipment, it was proofed that the corrosive sealant can be useful to corrosion control at crevice of corrosion sensitive area.

증기발생기 전열관 틈새복합환경(Pb+S+Cl)에서 Alloy 690의 응력부식균열거동 (Stress Corrosion Cracking Behavior of Alloy 690 in Crevice Environment (Pb + S + Cl) in a Steam Generator Tube)

  • 신정호;임상엽;김동진
    • Corrosion Science and Technology
    • /
    • 제17권3호
    • /
    • pp.116-122
    • /
    • 2018
  • The secondary coolant of a nuclear power plant has small amounts of various impurities (S, Pb, and Cl, etc.) introduced during the initial construction, maintenance, and normal operation. While the concentration of impurities in the feed water is very low, the flow of the cooling water is restricted, so impurities can accumulate on the Top of Tubesheet (TTS). This environment is chemically very complicated and has a very wide range of pH from acidic to alkaline. In this study, the characteristics of the oxide and the mechanism of stress corrosion cracking (SCC) are investigated for Alloy 690 TT in alkaline solution containing Pb, Cl, and S. Reverse U-bend (RUB) specimens were used to evaluate the SCC resistance. The test solution comprises 3m NaCl + 500ppm Pb + 0.31m $Na_2SO_4$ + 0.45m NaOH. Experimental results show that Alloy 690 TT of the crevice environment containing Pb, S, and Cl has significant cracks, indicating that Alloy 690 is vulnerable to stress corrosion cracking under this environment.

함정용 패키지 에어콘 응축기 핀튜브(Cu-Ni 70/30) 누설파괴 원인 분석 (Failure Analysis of Condenser Fin Tubes of Package Type Air Conditioner for Navy Vessel)

  • 박형훈;황양진;이규환
    • 한국표면공학회지
    • /
    • 제49권5호
    • /
    • pp.439-446
    • /
    • 2016
  • In 2015, a fin tube (Cu-Ni 70/30 alloy) of package type heat exchanger for navy vessel was perforated through the wall which led to refrigerant leakage. This failure occurred after only one year since its installation. In this study, cause of the failure was determined based on available documents, metallographic studies and computational fluid dynamics simulation conducted on this fin tube. The results showed that dimensional gap between inserted plastic tube and inside wall of fin tube is the cause of the swirling turbulent stream of sea water. As a result of combination of swirling turbulence and continuing collision of hard solid particles in sea water, erosion corrosion has begun at the end of inserted plastic tube area. Crevice corrosion followed later in the crevice between the outer wall of plastic tube and inner wall of fin tube. It was found that other remaining tubes also showed the same corrosion phenomena. Thorough inspection and prompt replacement will have to be accomplished for the fin tubes of the same model heat exchanger.

화력발전소용 슈퍼 듀플렉스 스테인리스 강(STS 329J4L) 조관 튜브 및 핀-튜브재의 부식거동 (Corrosion Behavior of Super Duplex Stainless Steel (STS 329J4L) Tubes and Fin-Tubes Used in Thermal Power Plant Applications)

  • 박진성;김용현;홍승갑;김성진
    • Corrosion Science and Technology
    • /
    • 제22권6호
    • /
    • pp.435-446
    • /
    • 2023
  • Corrosion behaviors of laser-welded super duplex stainless steel (SDSS) tubes after exposure to an actual power plant environment for one year and those of fin-tube welded SDSS were evaluated. Results showed that corrosion damage on the back side of the SDSS tube in the direction of hot air was higher than that on the front side regardless of weldment location. However, corrosion damage showed no difference between weldment and base metal due to recovery of phase fraction in the weldment through post weld heat treatment (PWHT). Nevertheless, the SDSS tube showed severe corrosion damage along grain boundary due to surface phase transformation (δ → γ) and Cr2N precipitation caused by PWHT with a high N2 atmosphere. Corrosion resistance of the SDSS tube was recovered when degraded surface was removed. Corrosion sensitivity of a fin-tube increased significantly due to pre-existing crevice, unbalanced phase fraction, and σ phase precipitation adjacent to the fusion line. Although corrosion resistance was improved by recovered phase fraction and sufficient dissolution of σ phase during PWHT, corrosion reaction was concentrated at the pre-existing crevice. These results suggest that welding conditions for fin-tube steel should be optimized to improve corrosion resistance by removing pre-existing crevice in the weldment.

오스테나이트계 스테인리스강의 틈부식 특성에 관한연구(I) (Study on the Characteristics of Crevice Corrosion for STS304 Austenitic Stainless Steel(I))

  • 임우조
    • 수산해양기술연구
    • /
    • 제36권1호
    • /
    • pp.66-72
    • /
    • 2000
  • 본 연구에서는 오스테나이트계 스테인리스 강재(STS 304)에 대해 NaCl 환경 중에서 틈부식 특성을 연구하기 위해, 정전압 분극장치에 의해 분극특성시험을 실시하여 NaCl 용액의 농도에 따른 STS 304 강재의 틈부식에 의한 분극 거동에 대해 연구한 결과는 다음과 같은 결론을 얻었다. 1) 틈부위는 심하게 부식되고 틈의 인접한 외부 표면은 부동태화된다. 2) 오스테나이트계 스테인리스강재인 STS 304 강재는 분극거동에 있어서 부식 전위는 3.5% NaCl까지 농도가 증가할수록 귀전위화되다가 농도가 3.5%이상으로 증가할수록 오히려 비전위화된다. 3) 부식 전위하에 전류밀도는 NaCl 농도가 3.5%까지 증가할수록 더 많이 배류되다가 3.5% 이상으로 증가할수록 오히려 더 적게 배류된다.(이 논문의 결론(요약) 부분임)

  • PDF

머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향 (Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials)

  • 김동우;김희산
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.