임플랜트 고정체와 지대나사간의 부식특성에 관한 연구

조선대학교 치과대학 치과보철학교실, 광양대학교 제철금속학과*

기수진, 권혁신, 최한철*

1. 서론

구강조직의 건강을 유지하면서 상실치아를 기능적, 심미적으로 수복하는 것은 임상가와 환자 모두의 치료 목표이다. 근처의 풀네 임플랜트의 사용으로 이러한 목표를 달성하고 치대의 고정성 및 가철성 보철물의 만족을 극복할 수 있다. 장기간과 성공적인 임상결과가 이를 잘 반영해 주고 있으며 골과 연조직에서 결과를 예측할 수 있도록 해준다.

그러나 수중의 임플랜트의 개발 및 시술의 증가와 함께 임플랜트 실패에 관한 보고도 많아지고 있다. 이는 임플랜트를 이용한 보철수복 역시 보철물 제작 과정과 유지관리 기간중에 보철물 관련된 여러 문제 가 야기될 수 있기 때문이다. 결국 임플랜트를 이용한 구강재건은 여러 단계를 거쳐야 성공적으로 마무리 될 수 있다. 즉 임플랜트 보철의 제작시와 매번 정기 점검시 임플랜트의 위치와 축 방향, 지대나사 및 보철물 유지나사의 폐쇄와 파절, 고정체 및 상부 지대주의 파절, 교합면 재료의 소실, 이중 금속 사용에 의한 부식, 치매, 기능적 문제, 구강진생의 용이성, 곰돌이 정도와 양내등에 대한 검진이 요구된다. 2

이러한 다양한 문제점중 특히 임플랜트 지대나사의 폐쇄는 나사유지형 임플랜트 보철물과 관련된 중요한 임상적 문제라 할 수 있다. 10 지대나사의 폐쇄는 임플랜트 구성요소 및 상부구조의 파절을 유발할 수 있고, 단수의 임플랜트 보철에서는 풀네 이는 임플랜트에 풀네 혹은의 하중이 부가되어 클러치에 좋지 않은 영향을 미칠 수 있다. Ekfeldt 등11은 단일 임플랜트 보철에 대한 임상적 평가에서 가장 두드러진 문제점이 지대나사의 폐쇄이고 그 반도는 48%에 달한다고 하였으며, Laney 등12는 단일 치아 임플랜트의 만년 연구에서 가장 큰 문제점은 지대나사의 폐쇄타입이고 이러한 나사올림으로 인해 구강바이성이 불일치되며 주변조직에 영향이 생기고 상부보철물이 파질될 수 있으며 극적으로는 클러치가 파괴될 수 있다고 하였다.

따라서 임플랜트 지대나사의 폐쇄의 원인을 규명하고 이를 방지하기 위한 연구가 활발하게 진행되고 있다. Jorneus 등13은 지대나사의 재료와 설계가 나사연결부의 안정성에 영향을 미치는 인자라고 지적하였으며 Tolman 등14는 나사저림의 원인으로 부식과 잘 맞지 않는 금속곱苓, 구성요소의 기계적 부조화, 교합적질과 저작기능의 문제 등의 원인을 지적하였고, Kohavi 등15는 임플랜트 보철물에 가해지는 고평행이나 골림력에 의해 나사저림이나 파절이 발생할 수 있다고 하였다. 이처럼 지대나사의 폐쇄와 관련하여 다수의 논의가 이루어지고 있는바, 본 연구에서는 임플랜트 구성요소의 부식 문제에 초점을 맞추어 실험에 응용해 보았다.

부식이란 금속이 액체용액에 의해 퇴보되는 현상이라고 정의할 수 있다. 16,17 치과 영역에서는 50여년 전 치과용 합금의 까버니 부식에 대한 과학적인 연구가 발표된 이후 부식에 대해 고려하기 시작하였으며 이들 대부분의 초기연구들은 아말가니 금의 고전적인 결합에 의한 부식을 언급하였다. 임플랜트에
대한 부식은 고정체와 상부 구조물 간의 이중금속으로 인한 갈바니 부식에 대한 연구가 있음에도 불구하고, 최근에는 저대주와 상부 구조물의 재료에 따른 갈바니 부식에 대한 연구가 보고되고 있다.

그러나 이러한 갈바니 부식에 관한 많은 연구와 대조적으로 임플란트 고정체 내부 압력구조와 지대주, 나사산 사이의 통부식에 대한 연구는 미비하며, 나사산 현상에 대한 논문들에서도 부식에 의한 지대주나의 플라팅이나 화장의 위험성에 대해서는 언급하지 않았다.

따라서 본 연구에서는 임플란트 고정체, 임플란트 지대주, 티타늄 지대주, 금 지대주의 압력 분극 실험과 각 시편 사이의 갈바니 부식 실험을 통해 각 시편의 부식 특성을 알아보고, 지대주나와 고정체간의 통부식 실험 및 간극 관찰을 통하여 다소의 지연을 얻었기에 이에 보고하는 바이다.

II. 연구재료 및 방법

1. 연구재료

1) 시편의 준비
본 연구에서는 부식실험을 위해 임플란트 고정체로 AVANA Dental Implant System의 AVANA Standard Fixture종 직경 3.75mm 길이 13mm를, 상부 지대주는 AVANA Cemented Abutment를, 유지나사는 금 지대주와 티타늄 지대주를 선택하였다(Table 1).

양극분극시험, 갈바니 부식시험, 통부식 실험을 위한 시편을 각각 따로 준비하였으며 각 시편은 부식 실험을 위해 전국에 연결된 후 연결부위는 epoxy resin을 이용하여 mounting하였다(Fig. 1).

2) 부식액
생체외 실험을 할 경우에는 실제환경과 유사한 조건을 제공하는 체액을 모방한 전해액의 활용이 중요하다. 치과재료로 이용되는 금속의 부식은 일반적으로 염소이온의 존재 및 활성화 관련이 있고 부동태 피막의 파괴에 편관하는 이온들의 식해와 타액에 존재하는 염소 이온이라는 보고가 있음으로써 본 연구에서는 염소이온을 포함한 부식액으로 자연타액과 성분이 가장 비슷한 인공타액을 사용하였다. 이는 치과임공의 부식실험 용액으로 주로 사용되고 있으며 측정을 위해 신선하게 보관되었고 37±1℃의 온도로 유지한 후 실험에 사용하였다(Table 2).

<table>
<thead>
<tr>
<th>Table 1. The composition of samples using in this study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples</td>
</tr>
<tr>
<td>AVANA Standard Fixture</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AVANA Cemented Abutment</td>
</tr>
<tr>
<td>Titanium Screw</td>
</tr>
<tr>
<td>Gold Screw</td>
</tr>
</tbody>
</table>

Fig. 1. Samples for this study
Table 2. Constituents of modified Fusayama’s artificial saliva

<table>
<thead>
<tr>
<th>Age Group(year)</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>0.4gm/l</td>
<td></td>
</tr>
<tr>
<td>NaCl</td>
<td>0.4gm/l</td>
<td></td>
</tr>
<tr>
<td>NaH2PO4·H2O</td>
<td>0.6gm/l</td>
<td></td>
</tr>
<tr>
<td>Na2S·5H2O</td>
<td>0.0016gm/l</td>
<td></td>
</tr>
<tr>
<td>Urea</td>
<td>0.5gm/l</td>
<td></td>
</tr>
</tbody>
</table>

2. 연구 방법

1) 양극 분극 실험 (Anodic Polarization Test)
각각의 시편(일활령 고정체, 일활령 지대주, 금 지대나사, 팀타늄 지대나사)을 인공약액에서 전 화학적 부식실험을 행하였다. 1000ml의 용량을 가진 분극시험용기(multineck beaker)에 전해액 600ml를 넣고 부식실험 30분간부터 argon gas를 풍 려보내 전해액내의 용액산소를 제거해 비산화성 환경을 형성한후 부식 측정 장비인 Potentiostat (model 273A EG&G Co., U.S.A.)에 연결하였다. 시편과 기준전극(reference electrode)간의 거리는 대략 1mm로 조절하였다. 이때 기준전극은 SCE(saturated calomel electrode)로 구성되고 보조전극 (counter electrode)은 고밀도 탄소전극(high dense carbon electrode)을, 작업전극(working electrode)으로는 각각의 준비된 시편을 사용하였다(Fig. 2).
양극 분극곡선을 얻기위해 Potentiostat에 연결한 전위차 발생장치에서 전위주사속도(potential scan rate)를 100mV/min으로 전위주사범위(potential range)는 -1500mV ~ +1500mV까지 측정하였고, 실험시마다 시편과 부식액을 교환하였다(Table 3).

2) 갈바닉 부식 실험 (Galvanic Corrosion Test)
갈바닉 부식 실험은 일활령 고정체와 일활령 지대주간, 일활령 고정체와 금 지대나사간, 일활령 고정체와 팀타늄 지대나사간, 일활령 지대주와 금 지대나사간, 일활령 지대주와 팀타늄 지대나사 간을 각각 측정하였다. 각 부위에 전선을 각각 따르 연결하여 시행하였다.
접촉전류 밀도(contact current density)는 600초 간 측정과 7,200초간 측정으로 나누어서 측정하였고 600초간 측정에서는 1초 간격으로 수치를 기록 하였으며 7,200초간 측정에서는 30초 간격으로 수치를 기록하였다. 갈바닉생성성으로 인해 얻어진 금속유리량은 Faraday's law에 따라 전류-시간 면 적과 같으며 이는 전하량으로 Q로 나타낼 수 있다. 이 값은 컴퓨터에서 자동으로 측정, 기록하였다(Fig. 3-a, b).

Table 3. Electrode and scanning conditions used in this study

<table>
<thead>
<tr>
<th>Electrode</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counter electrode</td>
<td>High density Carbon(C)</td>
</tr>
<tr>
<td>Reference electrode</td>
<td>Saturated calomel electrode</td>
</tr>
<tr>
<td>Working electrode</td>
<td>sample</td>
</tr>
<tr>
<td>Scanning range</td>
<td>-1500mV ~ +1500mV</td>
</tr>
<tr>
<td>Scan rate</td>
<td>100mV/min</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>modified Fusayama’s artificial saliva</td>
</tr>
<tr>
<td>Temperature</td>
<td>37±1℃</td>
</tr>
</tbody>
</table>
3) 틀부식 실험 (Crevice Corrosion Test)
본 실험이에는 업플랜트 고정체에 업플랜트 지대주를 연결하고, 3가 시스템의 Torque Driver를 이용하여 금 지대자사와 타타늄 지대자사를 각각 20N의 회전력으로 조이고 풀기를 반복한 후 3회체에 완전히 결합시켰다(30). 준비된 시험은 염소이온이 포함된 인공 태액에 위치시킨 후 업플랜트 고정체 내부의 나사간과 지대자사사이의 틀부식 합병을 미치는 영향을 조사하기 위해 CPPT (Cyclic Potentiodynamic Polarization Test) 방법을 사용하였다.
주사조건은 인공태액에서 100mV/min의 전위지속 속도로 -1000mV에서 최대전위(E_max) 1700mV까지 정방향전위(forward scan)를 행한 후 같은 전위지속 속도로 역방향전위(reverse scan)를 시작 다음 부등태영역과 만나는 점인 재부등태화 전위(E_r: repassivation potential)와 부식전위(E_corr: corrosion potential)와의 차이(=E_r-E_corr)로 틀부식 지연 정도를 조사하였다.

4) 주사전자 현미경에 의한 틀부식 양상 관찰
틀부식이 완료된 시험은 Sandpaper를 이용해 수직방향으로 절삭하고 0.1µm Al2O3로 절단부를 미세 연마한 후 주사전자현미경을 이용하여 업플랜트 고정체와 지대자사 사이의 부식양상을 관찰하였다.

III. 연구성적
1. 양극분극가동
각 시험을 인공 태액내에서 부식시킨 결과 각각의 부등태 전위는 업플랜트 고정체는 ~420mV, 업플랜트 지대주는 ~560mV, 타타늄 지대자사는 ~370mV, 금 지대자사는 ~230mV를 나타냈다. 특히 금 지대자사는 다른 시험에 비해 부등태 전류 밀도가 우측으로 이동하여 불안정한 부등태 피막 형성영역을 보였다. 또한 업플랜트 고정체는 업플랜트 지대주나 타타늄 지대자사에 비해 부등태 피막이 형성되는 전류값이 2 order정도 증가하는 양상을 보였다.

2. 갈바늬 부식양상
1) 업플랜트 고정체와 업플랜트 지대주간의 갈바
Fig. 4. Anodic polarization of curves of samples

Fig. 5-a. Galvanic corrosion between fixture and abutment.

Fig. 5-b. Galvanic corrosion between fixture and titanium screw.

2) 임플랜트 고정체와 티타늄 지대나사간의 갈바닉 부식(Fig. 5-b)
각 시험을 600초간 부식 실험을 시행한 결과 티타늄 지대나사에서 부식이 발생하였고, 7200초간 부식 실험에서는 접촉 전류밀도가 8.023×10⁻⁴A/cm²로 나타났으며 티타늄 지대나사에서 부식이 발생되었다.

3) 임플랜트 고정체와 금 지대나사간의 갈바닉 부식(Fig. 5-c)
각 시험을 600초간 부식 실험을 시행한 결과 금 지대나사에서 부식이 발생하였고, 7200초간 부식 실험에서는 접촉 전류밀도가 5.142×10⁻⁴A/cm²로 나타났으며 임플랜트 고정체에서 부식이 발생되었다.

4) 임플랜트 지대주와 티타늄 지대나사간의 갈바닉 부식(Fig. 5-d)
각 시험을 600초간 부식 실험을 시행한 결과 티타

Fig. 5-a. Galvanic corrosion between fixture and abutment.

Fig. 5-b. Galvanic corrosion between fixture and titanium screw.
Fig. 5-c. Galvanic corrosion between fixture and gold screw.

Fig. 5-d. Galvanic corrosion between abutment and titanium screw.

Fig. 5-e. Galvanic corrosion between abutment and gold screw.

5) 임플란트 지대자와 금 지대자간의 갈바닉 부식 (Fig. 5-e)

각 시편을 600초간 부식 실험을 시행한 결과 금 지대자에서 부식이 발생하였고, 7200초간 부식 실험에서는 접촉 전류밀도가 $1.591 \times 10^5 \text{C/cm}^2$로 나타났다.
으며 임플란트 지대주가 금 지대나사는 1000초까지는 밀봉 갈바니부식이 일어나다가 시간이 경과 할수록 갈바니 부식이 나타나지 않았다.

3. 톨부식 양상

1) CPPT 실험 결과

임플란트 고정체와 임플란트 지대주를 각각 금 지대나사와 티타늄 지대나사를 이용하여 연결시킨후 전해액내에서 CPPT (Cyclic Potentiodynamic Polarization Test) 방법을 사용해 임플란트 고정체 내부 압사구 조각과 지대나사선 사이에 들어간 부식이 발생한 양상을 조사한 결과 금 지대나사를 사용한 경우는 부식전위 -330mV이고 재부등화전위는 1000mV로 |E_{corr} - E_{corr'}| 가 1330mV이고, 티타늄 지대나사 사용한 경우는 부식전위 -470mV이고 재부등화전위는 1500mV로 |E_{corr} - E_{corr'}| 가 1970mV를 보였다.

2) 주사전자현미경에 의한 톨부식 양상 (Fig. 7, 8)

흡부식 실험 후 시편을 mounting하고 절삭하여 전자현미경으로 톨 부식 양상을 관찰한 결과 임플란트 고정체와 지대주사이로 틸투어 들어간 용액이 임플란트 고정체 내부 압사구와 지대나사선의 경계부를 따라 틸투어하여 그곳에 존재할 부식양상을 보였다. 특히 압사구 압사구와 고정체의 경계부, 티타늄 지대나사와 금 지대나사의 접촉부에 특이한 톨부식 양상을 보였다.

Ⅳ. 총괄 및 고찰

결유학적 임플란트에 상부 보철물을 고정하는 방법인 나사에 의해 유기되는 형태는 필요한 경우 불가피하게 다시 장착할 수 있는 장점을 가지 임상에서 많이 이용되고 있다. 30. 그러나 이 고정형태와 연관하여 많은 연구들에 의해 나사의 플립이 중요한 임상적 문제점으로 지목되고 있다. 31. 이러한 나사플립의 원인을 규명하고 이를 방지하기 위한 여러 노력들이 있었는데 본 연구에서는 임플란트 구성성분간의 부식양체에 초점을 맞추어 실험에 응용해 보았다.

대부분의 부식현상은 전기화학적 부식평가법인 동 전위분극측정법 (potentio-dynamic polarization method)을 이용해 평가되는데 이 방법은 전위를 일정한 속도로 시편에 가하여 흐르는 전류량의 변화를 관찰하여 전류밀도-전위관계를 측정함으로써 수용액 환경에서 금속시트의 부식 특성을 결정하는데 이용된다. 이러한 측정은 부식경향과 부식속도, 부등화의 형상과 그 피막의 용하, 공석경향 (pit-ting tendency), 기타 중요한 자료에 관한 정보를 제공함으로써 다른 금속 및 합금의 부식저항의 합리적으로 비교할 수 있다. 이 방법의 장점은 신속성, 용이성, 반복점성, 정확성등이 있는 반면 단점으로는 단기간의 검사시간으로 인한 임상적 연계성의 한계가 있다는 점이 지적되었다. 32, 33.

실험적으로 부식양체를 증명하기 위해서는 높은 임상적 균형성을 갖는 적절한 실험절차가 요구되는데, 특히 생체의 실험을 할 경우에는 실제 환경과 유사한 조건을 제공하는 실험을 모방할 전해액의 활용이 중요하다. 치과재료로 이용되는 금속의 부식은 일반적으로 염소이온의 존재 및 활동과 관련이 있고 부등화의 폐쇄에 관여하는 이온도 신체와 태양에 존재하는 염소 이온이라는 보고가 있다. 34, 35. 본 연구에서도 각각의 시편의 부식저항을 보고 위해 염소이온이 포함된 인공배액을 이용하여 약국간 실험을 시행한 결과 임플란트 고정체, 임플란트 지대주, 티타늄 지대나사는 낮은 범위의 부등화 피막저항을 보이며 반면 금 지대나사는 다른 시험에 비해 부등화 전위 밀도가 높아도 이동하여 불안정한 부등화 피막 형성양상은 보였다. 또한 임플란트 고정체는 임플란트 지대주나 티타늄 지대나사에 비해 부등화 피막이 형
성되는 전류값이 2 order 정도 증가를 보입니다. 이는 임플란트 고정체 표면의 급격한 나사상으로 인하여 표면적이 증가되었기 때문에 생각합니다.

본 연구에 사용한 각 시험의 접촉에 의한 갈바너 부식의 영향을 살펴본 결과 임플란트 고정체와 금 지대나사간의 갈바너 부식은 초기에는 금 지대나사 부위에서 부식이 발생하였고 시간이 경과하면서 임플란트 고정체 부위에서 부식이 발생하였으나 그 양은 미미하였다. 임플란트 고정체와 티타늄 지대나사간의 갈바너 부식은 티타늄 지대나사 부위에서 부식이 발생되었고 전체적으로 변환에서 알 수 있었다. 이는 동일한 급속성으로도 소강극-강극 효과에 의하여 변형이 작은 지대나사 부위에서 갈바너 부식이 심하게 나타나기 때문으로 사료된다.

Gross 등(20)은 여러 회사 제품의 고정체-지대주 계면 (A-1 interface)을 조사한 결과 모든 제품에서 고정체-지대주 계면이 microscopic space가 존재하며 이는 치은관구이나 타액의 통로가 될 수 있다고 하였다. 이러한 microleakage에 의해 구멍이나 임플란트 주위염이 유발될 수 있으며 또한 구성성분의 부착이 이나 지대주의 미세한 움직임, 보철물의 부착이 등이 발생될 수 있을 것이라고 하였다. Jansen 등(20)은 임플란트 고정체와 지대주 사이의 틀이 bacteria의 통로로 작용하여 임플란트 주위의 연조직에 영향을 끼칠 수 있다고 하였다. 부식의 관점에서 이러한 틀은 틀부식을 야기할 수 있다.

틀부식이란 전해액에 노출된 급속 표면상의 어떤 틀 또는 가려진 부분에서 국부적으로 심한 부식이 발생하는 것을 말하며 이러한 틀부식이 발생하는데는 금 접촉면 또는 금 접촉면에 의하여 가속적으로 증가한다. 틀이 부식영역으로 작용하기 위해서는 용액이 들어갈 수 있도록 충분히 넓혀야 하고 또 용액이 높은 용액이 강하게 정착되도록 충분히 줄어들어야 한다. 따라서 틀부식은 그 폭이 수천 times의 1인치 이하인 곳에서 주로 발생한다. 또 틀부식은 C2이온을 포함한 용액에서 그 정도가 심하다(26,17). 따라서 본 연구에서도 각각의 시험을 진행한 후 C2이온을 포함한 인공이식액에서 틀부식 실험을 시행한 결과 금 지대나사가 사용한 경우는 부식전위는 -330mV이고 재부동태화 전위는 1000mV로 | Ecorr-Ecorr | 가 1330mV이고 티타늄 지대나사를 사용한 경우는 부식전위는 -470mV이고 재부동태화 전위는 1500mV로 | Ecorr-Ecorr | 가 1970mV를 보여서 티타늄 지대나사가 금 지대나사에 비하여 틀부식 저항성이 좋았으며 이는 이중금속간의 급속접촉부위에서 갈바너 부식이 발생하고 그 후 부식에 의해서 발생된 틀부식 시공부를 가속화 시키기 때문으로 사료된다.

부식실험 후 시편을 접착하여 관찰한 전자현미경 사진에서 임플란트 고정체 내부 암나사산과 지대나사의 경계부를 따라 틀이 존재한 부위에서 부식양상을 보였다. 특히 나사상의 끝이나 콜부위에서 나사구조가 파괴되면서 그 부위가 볼륨으로 부식된 양상을 보였다. 또한 티타늄 지대나사를 사용한 경우에 비하여 금 지대나사를 사용한 경우 더욱 많은 틀이 관찰되어 지대나사상과 임플란트 고정체 내부 암나사산 사이의 틀이 부식에 영향을 미쳤 것으로 사료되었다.

강한 기계적 하중과 부식환경에의 노출은 균열 (cracking)에 의한 급속재료 파괴를 가져올 수 있다. William 등(26)은 이런 현상을 응력 부식 균열(stress corrosion cracking)이라 하였는데 이렇게 부식이 한 부위에 집중적으로 발생하고 반복적인 저작력이 가해지면 그 부위에서 금속의 피로에 의한 파열이 발생할 수 있다. 따라서 본 연구에서도 같이 틀에서 발생된 틀부식은 실제 반복 하중이 작용시 응력 부식 균열로 발전될 수 있을 것이다.

현재까지 임플란트 고정체와 임플란트 지대주 그 리고 지대나사간의 틀의 영향에 대한 연구는 미비한 상태이지만 갈바너 부식 및 틀부식이 임플란트 고정체와 지대나사사이의 접착력의 파괴를 야기하고 결과적으로 지대나사의 품질에 영향을 미칠 수 있을음을 간과해서는 안된다. 또한 구성성분사이에 부식이 존재하는 경우 이러한 부식의 영향이 더욱 현저하며, 반복적인 저작력이 가해지면 그 부위에서 금속의 피로에 의한 파열이 발생할 수 있을 것이다. 따라서 부식현상을 이해하고 임플란트 고정체와 지대나사간의 적합성 항상, 우수한 내식성을 가지는 새로운 개발, 생체적합성의 개선등에 관한 연구가 계속되어야할 것으로 사료된다.
V. 결론

본 연구에서는 임플란트 고정체, 임플란트 지대부, 티타늄 지대나사, 금 지대나사의 양측 분극 실험과 각 시편 사이의 갈바니 부식 실험을 통해 각 시편의 부식 특성을 알아보고, 임플란트 고정체와 임플란트 지대부를 금 지대나사와 티타늄 지대나사를 이용하여 연결시켜 틸부식 실험을 시행한 후 시편을 절단하여 주사전자현미경으로 관찰하여 다음과 같은 결론을 얻었다.

1. 양극 분극 실험 결과, 각각의 부드러 전위는 임플란트 고정체는 -420mV, 임플란트 지대주는 -560mV, 티타늄 지대나사는 -370mV, 금 지대나사는 -230mV를 나타냈다. 이중 금 지대나사는 다른 시편에 비해 부드러 전류 밀도가 우측으로 이동하여 불안정한 부드러 파막 형성 영역을 보였 다.

2. 갈바니 부식 실험 결과, 임플란트 고정체와 금 지대나사 사이의 갈바니 부식은 점착전류밀도는 5,412×10⁻⁷C/cm²있고 임플란트 고정체에서 부식이 발생하였고, 임플란트 고정체와 티타늄 지대나사 사이의 갈바니 부식의 경우 점착전류밀도는 8,023×10⁻⁷C/cm²있고 티타늄 지대나사에 서 부식이 발생되었다.

3. 틸부식 실험 결과 금 지대나사를 사용한 경우는 부식전위와 제부등배 전위의 차이가 1330mV이고 티타늄 지대나사를 사용한 경우는 부식전위와 제부등배 전위의 차이가 1970mV를 보여 티타늄 지대나사를 사용한 경우가 금 지대나사를 사용한 경우보다 틸부식 저항성이 높았다.

4. 틸부식 실험후 시편을 절단하여 전자현미경으로 틸부식 양상을 관찰한 결과 티타늄 지대나사를 사용한 경우에 비하여 금 지대나사를 사용한 경우 더욱 많은 틸이 관찰되었다. 특히 예헌한 구조가 파손된 나사단의 끝이나 골 부위에서 집중적으로 부식된 양상을 보였다.

참고 문헌

Fig. 7. Crevice corrosion behavior of sample using titanium screw after CPPT in SEM (A: abutment, F: fixture, T: titanium screw)
Fig. 8. Crevice corrosion behavior of sample using screw after CPPT in SEM. (A: abutment, F: fixture, G: gold screw)
ABSTRACT

CORROSION CHARACTERISTICS BETWEEN IMPLANT FIXTURE AND ABUTMENT SCREW

Su-Jin Kee, Hyeog-Sin Kweon, Han-Cheol Choe*

Department of Prosthodontics, College of Dentistry, Chosun University
Department of Iron-manufacture and metallogical engineering, Kwang-Yang University.*

The purpose of this study was to compare the corrosion characteristics between implant fixture and two types of abutment screw: gold screw, titanium screw.
The anodic polarization behavior, the galvanic corrosion behavior, and the crevice corrosion behavior of prepared samples were investigated using potentiostat and scanning electron microscope.

The results were as follows:
1. Anodic polarization behavior of samples:
The primary passivation potential of implant fixture was ~420mV, implant abutment was ~560mV, titanium screw was ~370mV and gold screw was ~230mV. All samples were shown to have a high corrosion potential and good formation of passive film. The critical passive current density of gold screw was higher than that of other samples and the sample of gold screw showed a unstable passive film formation at passive region.

2. Galvanic corrosion behavior of samples:
Contact current density between implant fixture and titanium screw showed $8.023 \times 10^{-8} \text{C/cm}^2$.
Contact current density between implant fixture and gold screw showed $5.142 \times 10^{-8} \text{C/cm}^2$.

3. Crevice corrosion behavior of samples:
The crevice corrosion resistance of sample using titanium screw was higher than that of sample using gold screw, and a severe corrosion morphologies were observed at the fixture-screw interface by the scanning electron microscope.