• Title/Summary/Keyword: crash characteristics

Search Result 193, Processing Time 0.024 seconds

Car-to-Car Offset Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 부분정면충돌 모델링)

  • Lim, Jaemoon;Lee, Kwangwon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.2
    • /
    • pp.11-16
    • /
    • 2016
  • The objective of this study was to construct the spring-mass models for the car-to-car offset frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from the offset frontal crash test. The spring-mass model of the passenger car could effectively approximate the crash characteristics for the offset frontal barrier impact and the car-to-car offset frontal impact scenarios.

Collision Characteristics of an Adult Bicycle to a Car (성인용 자전거의 승용차량 충돌특성)

  • Kang, Dae-Min;Ahn, Seung-Mo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.92-97
    • /
    • 2012
  • In the present the usage of bicycle has increased steeply due to well-being and convenient way of movement. In car to bicycle accident, the throw distance of bicycle is very important factor for estimating collision situation. In this study, simulations and collision tests in actual car to bicycle were executed for obtaining throw distance of bicycle. The simulations were executed by PC-CRASHTM s/w with vehicle of sedan type. Sand bags were used for the behavior of bicyclist instead of dummy and factors considered were vehicle velocity, the crashed angles and part of bicycle to vehicle, and bicycle was adult type. From the results, the throw distances of tire collision of 00 was longer than that of 450 tire crash, and the throw distances of 900 frame crash were longer than those of 450 frame crash. With based on actual crash tests and simulations, restitution coefficient of between vehicle and bicycle was estimated as 0.1. Finally the increaser vehicle velocity the longer the throw distances of bicycle and the simulation results were relatively good agreement to the results of experiment.

Damageability , Repairability and Safety of Vehicles at Low Speed 40% Offset Crash Test (저속 40%오프셋 충돌시험을 통한 차량의 손상성 .수리성 및 안전성에 관한연구)

  • 박인송;허승진;정태용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.203-211
    • /
    • 1999
  • The research committee for automobile repairs (RCAR), an international body of insurance research centers, has adopted the typical low speed crash test based on an average damage level in crash accidents to estimate the damageability , repairability and safety. The characteristics of body acceleration and the probability of injury are investigated based on damaged components, accelerations of body and injured dummy to analyze damageability and the driver's safety under low speed crash environment. It is found from the experimental results that the probability of head and thorax injuries are very low comparing to the injury criteria of FMVSS No.208. Furthermore, it is suggested that the deployment of airbag may not be necessary at RCAR low speed frontal crash test.

  • PDF

Research on Vehicle Crash Compatibility Through Car to Car Frontal Crash Test (차 대 차 정면충돌시험을 통한 상호안전성 연구)

  • Park, In-Song;Kim, Guan-Hee;Hong, Seung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • Since 2000, sports utility vehicles(SUVs) occupy about 40% of domestic vehicle sales. As sports utility vehicle sales are increased the probability of crash accident between SUVs and passenger vehicles increases. Generally, SUVs are heavier than passenger vehicles and their drive height and front end stillness are higher than passenger vehicles. Because of these characteristics SUVs cause more severe injury and fatal injury in SUV to passenger vehicle head-on impact. To evaluate SUV's aggessivity to passenger vehicle, we carried out SUV to passenger vehicle head-on crash test. And finally the way how to reduce incompatibility between SUVs and passenger vehicles is suggested.

Development of Crash Protected Memory for Event Recorder (Event Recorder를 위한 Crash Protected Memory 개발)

  • Song, Gyu-Youn;Lee, Sang-Nam;Ryu, Hee-Moon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1068-1074
    • /
    • 2010
  • In high speed railway, event recorder is essential system for analyzing the cause of train accident. It stores train operation sent by train control system in safe memory unit. Crash protected memory, the safe memory unit for event recorder, keeps the stored contents from severe environment. For crash protected memory, we have designed the architecture of concrete enclosure and controller board. Proposed system provides large volume of memory capacity and fault tolerance architecture. For checking the characteristics of proposed crash protected memory specification, the simulation is executed. Simulation results shows the designed crash protected memory meets all requirements.

  • PDF

Car-to-Car Frontal Impact Modeling using Spring-Mass Model (Spring-Mass 모델을 이용한 차대차 정면충돌 모델링)

  • Lim, Jaemoon;Jung, Geunseup
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.2
    • /
    • pp.8-14
    • /
    • 2015
  • The objective of this study was to construct the spring-mass models for the car-to-car frontal impact crash. The SISAME software was utilized to extract the spring-mass models using the data from US-NCAP frontal crash tests. The spring-mass models of a compact car and a midsize car could effectively approximate the crash characteristics for the full frontal barrier impact and the car-to-car frontal impact scenarios. Compared to the barrier crash tests, the dummy injuries of midsize car decreased, while the dummy injuries of compact car increased, under the frontal car-to-car crash circumstances.

Dynamic Characteristics of Composite Support Structures with Different Car Crash Speeds (다양한 차량 충돌속도에 따른 복합재료 지주구조의 동적 거동 특성)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.65-69
    • /
    • 2015
  • This study dealt with dynamic characteristics by real car crash simulation of composite support structures for road facilities. The effects of different material properties of composites for various car crash speeds are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of steel support structures using the LS-DYNA program is further extended to study dynamic behaviors of the support structures made of various composite materials. Based on the passenger safety assessment, the numerical results for various parameters are verified by comparing different models with internal energy occurred in the support and car.

The Derivation of Simplified Vehicle Body Stiffness Equation Using Collision Analysis (자동차 충돌해석에 의한 단순화된 차체 강성 방정식의 유도)

  • 장인식;채덕병
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.177-185
    • /
    • 2000
  • The deformation characteristics is one of the major factors to resume the crash configuration in collision accident reconstruction. Crash analysis are carried out using finite element method and body stiffness equations representing force-deformation relationship are derived, Two different crash conditions : 1) frontal barrier impact 2) frontal impact between cars are given for the derivation of the equations. The stiffness coefficient of equation by method 2) is larger than that by method. 1). Crash analysis between two vehicles is accomplished with three crash angles and three velocities for each angle condition. The deformations are measured for six selected points and deformation energies are calculated using the derived equations. Equation by method 2) results in better estimation of deformation energy than that by method 1) for all crush configurations. The estimated energies can be utilized as one of indices to identify the type of the collision accident result.

  • PDF

Impact Performance of a Crash Member Filled with Aluminum Foam (알루미늄 폼이 충전된 충돌부재의 충격흡수 성능)

  • Kim, N.H.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.8
    • /
    • pp.555-561
    • /
    • 2011
  • The energy absorbing characteristics of crash members in a car collision play an important role in controlling the amount of damage to the passenger compartment. Crash members filled with aluminum foam are expected to have reduced mass while maintaining or even improving the crashworthiness compared to the conventional hollow-beam types. Finite element simulations are carried out in the present work to assess the improvement of crashworthiness by the use of aluminum foam fillers. The numerical results agreed well with experimental measurements. Parametric studies are conducted to analyze the effect of impact velocity, weld strength, and initiator on the crash response.

Nonlinear Crash Analyses and Comparison with Experimental Data for the Skid Landing Gear of a Helicopter (헬리콥터 강착장치 비선형 충돌해석 및 실험결과 비교)

  • 이상민;김동현;정세운
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.87-94
    • /
    • 2006
  • In this study, nonlinear crash analyses have been conducted for the skid landing gear of a helicopter. The realistic landing gear model of the commercial helicopter (SB427) is considered. Three-dimensional dynamic finite element model with variable thickness and material plastic behavior is constructed and LS-DYNA(Ver.970) is used to conduct nonlinear transient crash analyses for different impact conditions. Characteristics of nonlinear transient responses due to the ground crash are investigated for typical structural design criteria of a skid landing gear system. In addition, comparison results for maximum crash deformations of the skid landing gear are presented and the important effect of ground friction for numerical accuracy is described.